Ссылки

The problem of geometric distance d evaluation from a point X0 to an algebraic curve in R2 or manifold G(X) = 0 in R3 is treated in the form of comparison of exact value with two its successive approximations d(1) and d(2). The geometric distance is evaluated from the univariate distance equation possessing the zero set coinciding with that of critical values of the function d2(X0), while d(1)(X0) and d(2)(X0) are obtained via expansion of d2(X0) into the power series of the algebraic distance G(X0). We estimate the quality of approximation comparing the relative positions of the level sets of d(X), d(1)(X) and d(2)(X).
Язык оригиналаанглийский
Название основной публикацииProceedings of the 8th International Conference on Pattern Recognition Applications and Methods
Подзаголовок основной публикацииICPRAM
РедакторыAna Fred, Maria De Marsico, Gabriella Sanniti di Baja
ИздательSciTePress
Страницы715-720
Том1
ISBN (электронное издание)978-989-758-351-3
СостояниеОпубликовано - 2019
Событие8th International Conference on Pattern Recognition Applications and Methods - Прага, Чехия
Продолжительность: 19 фев 201921 фев 2019

конференция

конференция8th International Conference on Pattern Recognition Applications and Methods
Сокращенное названиеICPRAM 2019
Страна/TерриторияЧехия
ГородПрага
Период19/02/1921/02/19

    Области исследований

  • Algebraic Manifold, Level Set, Discriminant, Distance Approximation

    Предметные области Scopus

  • Компьютерное зрение и распознавание образов

ID: 39524980