Standard

Approximation by Entire Functions on a Countable Set of Continua. / Shirokov, N. A.; Silvanovich, O. V.

в: Vestnik St. Petersburg University: Mathematics, Том 53, № 3, 01.07.2020, стр. 329-335.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Shirokov, NA & Silvanovich, OV 2020, 'Approximation by Entire Functions on a Countable Set of Continua', Vestnik St. Petersburg University: Mathematics, Том. 53, № 3, стр. 329-335. https://doi.org/10.1134/S1063454120030139

APA

Shirokov, N. A., & Silvanovich, O. V. (2020). Approximation by Entire Functions on a Countable Set of Continua. Vestnik St. Petersburg University: Mathematics, 53(3), 329-335. https://doi.org/10.1134/S1063454120030139

Vancouver

Shirokov NA, Silvanovich OV. Approximation by Entire Functions on a Countable Set of Continua. Vestnik St. Petersburg University: Mathematics. 2020 Июль 1;53(3):329-335. https://doi.org/10.1134/S1063454120030139

Author

Shirokov, N. A. ; Silvanovich, O. V. / Approximation by Entire Functions on a Countable Set of Continua. в: Vestnik St. Petersburg University: Mathematics. 2020 ; Том 53, № 3. стр. 329-335.

BibTeX

@article{9c81fa5a49d74dad970e02affc61162e,
title = "Approximation by Entire Functions on a Countable Set of Continua",
abstract = "Abstract: The problem of approximation by entire functions of exponential type defined on a countable set E of continua Gn, E = $$\bigcup\nolimits_{n \in \mathbb{Z}} {{{G}_{n}}} $$ is considered in this paper. It is assumed that all Gn are pairwise disjoint and are situated near the real axis. It is also assumed that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independently on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies condition $$\int\limits_0^x {\frac{{\omega (t)}}{t}dt} + x\int\limits_x^\infty {\frac{{\omega (t)}}{{{{t}^{2}}}}dt} \leqslant c\omega (x).$$An entire function Fσ of exponential type ≤σ is then constructed so that the following estimate of approximation of the function f by functions Fσ is valid: $$\left| {f(z) - {{F}_{\sigma }}(z)} \right| \leqslant {{c}_{f}}{{\sigma }^{{ - r}}}\omega ({{\sigma }^{{ - r}}}),\quad z \in \mathbb{Z},\quad \sigma \geqslant 1.$$",
keywords = "approximation, entire functions of exponential type, H{\"o}lder classes",
author = "Shirokov, {N. A.} and Silvanovich, {O. V.}",
note = "Funding Information: N. A. Shirokov acknowledges the support of the Russian Foundation for Basic Research (project no. 20-01-00209). Publisher Copyright: {\textcopyright} 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = jul,
day = "1",
doi = "10.1134/S1063454120030139",
language = "English",
volume = "53",
pages = "329--335",
journal = "Vestnik St. Petersburg University: Mathematics",
issn = "1063-4541",
publisher = "Pleiades Publishing",
number = "3",

}

RIS

TY - JOUR

T1 - Approximation by Entire Functions on a Countable Set of Continua

AU - Shirokov, N. A.

AU - Silvanovich, O. V.

N1 - Funding Information: N. A. Shirokov acknowledges the support of the Russian Foundation for Basic Research (project no. 20-01-00209). Publisher Copyright: © 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/7/1

Y1 - 2020/7/1

N2 - Abstract: The problem of approximation by entire functions of exponential type defined on a countable set E of continua Gn, E = $$\bigcup\nolimits_{n \in \mathbb{Z}} {{{G}_{n}}} $$ is considered in this paper. It is assumed that all Gn are pairwise disjoint and are situated near the real axis. It is also assumed that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independently on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies condition $$\int\limits_0^x {\frac{{\omega (t)}}{t}dt} + x\int\limits_x^\infty {\frac{{\omega (t)}}{{{{t}^{2}}}}dt} \leqslant c\omega (x).$$An entire function Fσ of exponential type ≤σ is then constructed so that the following estimate of approximation of the function f by functions Fσ is valid: $$\left| {f(z) - {{F}_{\sigma }}(z)} \right| \leqslant {{c}_{f}}{{\sigma }^{{ - r}}}\omega ({{\sigma }^{{ - r}}}),\quad z \in \mathbb{Z},\quad \sigma \geqslant 1.$$

AB - Abstract: The problem of approximation by entire functions of exponential type defined on a countable set E of continua Gn, E = $$\bigcup\nolimits_{n \in \mathbb{Z}} {{{G}_{n}}} $$ is considered in this paper. It is assumed that all Gn are pairwise disjoint and are situated near the real axis. It is also assumed that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independently on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies condition $$\int\limits_0^x {\frac{{\omega (t)}}{t}dt} + x\int\limits_x^\infty {\frac{{\omega (t)}}{{{{t}^{2}}}}dt} \leqslant c\omega (x).$$An entire function Fσ of exponential type ≤σ is then constructed so that the following estimate of approximation of the function f by functions Fσ is valid: $$\left| {f(z) - {{F}_{\sigma }}(z)} \right| \leqslant {{c}_{f}}{{\sigma }^{{ - r}}}\omega ({{\sigma }^{{ - r}}}),\quad z \in \mathbb{Z},\quad \sigma \geqslant 1.$$

KW - approximation

KW - entire functions of exponential type

KW - Hölder classes

UR - http://www.scopus.com/inward/record.url?scp=85090026775&partnerID=8YFLogxK

U2 - 10.1134/S1063454120030139

DO - 10.1134/S1063454120030139

M3 - Article

AN - SCOPUS:85090026775

VL - 53

SP - 329

EP - 335

JO - Vestnik St. Petersburg University: Mathematics

JF - Vestnik St. Petersburg University: Mathematics

SN - 1063-4541

IS - 3

ER -

ID: 75032150