Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Approximation by Entire Functions on a Countable Set of Continua. / Shirokov, N. A.; Silvanovich, O. V.
в: Vestnik St. Petersburg University: Mathematics, Том 53, № 3, 01.07.2020, стр. 329-335.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Approximation by Entire Functions on a Countable Set of Continua
AU - Shirokov, N. A.
AU - Silvanovich, O. V.
N1 - Funding Information: N. A. Shirokov acknowledges the support of the Russian Foundation for Basic Research (project no. 20-01-00209). Publisher Copyright: © 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Abstract: The problem of approximation by entire functions of exponential type defined on a countable set E of continua Gn, E = $$\bigcup\nolimits_{n \in \mathbb{Z}} {{{G}_{n}}} $$ is considered in this paper. It is assumed that all Gn are pairwise disjoint and are situated near the real axis. It is also assumed that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independently on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies condition $$\int\limits_0^x {\frac{{\omega (t)}}{t}dt} + x\int\limits_x^\infty {\frac{{\omega (t)}}{{{{t}^{2}}}}dt} \leqslant c\omega (x).$$An entire function Fσ of exponential type ≤σ is then constructed so that the following estimate of approximation of the function f by functions Fσ is valid: $$\left| {f(z) - {{F}_{\sigma }}(z)} \right| \leqslant {{c}_{f}}{{\sigma }^{{ - r}}}\omega ({{\sigma }^{{ - r}}}),\quad z \in \mathbb{Z},\quad \sigma \geqslant 1.$$
AB - Abstract: The problem of approximation by entire functions of exponential type defined on a countable set E of continua Gn, E = $$\bigcup\nolimits_{n \in \mathbb{Z}} {{{G}_{n}}} $$ is considered in this paper. It is assumed that all Gn are pairwise disjoint and are situated near the real axis. It is also assumed that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independently on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies condition $$\int\limits_0^x {\frac{{\omega (t)}}{t}dt} + x\int\limits_x^\infty {\frac{{\omega (t)}}{{{{t}^{2}}}}dt} \leqslant c\omega (x).$$An entire function Fσ of exponential type ≤σ is then constructed so that the following estimate of approximation of the function f by functions Fσ is valid: $$\left| {f(z) - {{F}_{\sigma }}(z)} \right| \leqslant {{c}_{f}}{{\sigma }^{{ - r}}}\omega ({{\sigma }^{{ - r}}}),\quad z \in \mathbb{Z},\quad \sigma \geqslant 1.$$
KW - approximation
KW - entire functions of exponential type
KW - Hölder classes
UR - http://www.scopus.com/inward/record.url?scp=85090026775&partnerID=8YFLogxK
U2 - 10.1134/S1063454120030139
DO - 10.1134/S1063454120030139
M3 - Article
AN - SCOPUS:85090026775
VL - 53
SP - 329
EP - 335
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 3
ER -
ID: 75032150