Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Abstract: The problem of approximation by entire functions of exponential type defined on a countable set E of continua Gn, E = $$\bigcup\nolimits_{n \in \mathbb{Z}} {{{G}_{n}}} $$ is considered in this paper. It is assumed that all Gn are pairwise disjoint and are situated near the real axis. It is also assumed that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independently on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies condition $$\int\limits_0^x {\frac{{\omega (t)}}{t}dt} + x\int\limits_x^\infty {\frac{{\omega (t)}}{{{{t}^{2}}}}dt} \leqslant c\omega (x).$$An entire function Fσ of exponential type ≤σ is then constructed so that the following estimate of approximation of the function f by functions Fσ is valid: $$\left| {f(z) - {{F}_{\sigma }}(z)} \right| \leqslant {{c}_{f}}{{\sigma }^{{ - r}}}\omega ({{\sigma }^{{ - r}}}),\quad z \in \mathbb{Z},\quad \sigma \geqslant 1.$$
Язык оригинала | английский |
---|---|
Страницы (с-по) | 329-335 |
Число страниц | 7 |
Журнал | Vestnik St. Petersburg University: Mathematics |
Том | 53 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 июл 2020 |
ID: 75032150