Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Application of Neural Networks for Event-by-Event Evaluation of the Impact Parameter. / Galaktionov, K.; Rudnev, V.; Valiev, F.
в: Physics of Particles and Nuclei, Том 54, № 3, 01.06.2023, стр. 446-448.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Application of Neural Networks for Event-by-Event Evaluation of the Impact Parameter
AU - Galaktionov, K.
AU - Rudnev, V.
AU - Valiev, F.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Abstract: Evaluation of the impact parameter in single events is crucial for the correct and efficient data processing in collision-based nuclear and particle physics experiments. Estimating the impact parameter in real time allows experimentalists to preselect the most informative events at the data acquisition stage before any processing. The presented computational experiments show the applicability of neural networks combined with the microchannel plate detectors to directly estimate the impact parameter at the experimental facilities under construction.
AB - Abstract: Evaluation of the impact parameter in single events is crucial for the correct and efficient data processing in collision-based nuclear and particle physics experiments. Estimating the impact parameter in real time allows experimentalists to preselect the most informative events at the data acquisition stage before any processing. The presented computational experiments show the applicability of neural networks combined with the microchannel plate detectors to directly estimate the impact parameter at the experimental facilities under construction.
UR - https://www.mendeley.com/catalogue/7855e74e-861b-3688-87fc-ff5b52da7ba2/
U2 - 10.1134/s1063779623030152
DO - 10.1134/s1063779623030152
M3 - Article
VL - 54
SP - 446
EP - 448
JO - Physics of Particles and Nuclei
JF - Physics of Particles and Nuclei
SN - 1063-7796
IS - 3
ER -
ID: 106600704