Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. / Zhuo, Ying; Sun, Hong; Uddin, Md Helal; Barr, Maïssa K.S.; Wisser, Dorothea; Roßmann, Philip; Esper, Julian D.; Tymek, Sarah; Döhler, Dirk; Peukert, Wolfgang; Hartmann, Martin; Bachmann, Julien.
в: Electrochimica Acta, Том 388, 138522, 01.08.2021.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - An additive-free silicon anode in nanotube morphology as a model lithium ion battery material
AU - Zhuo, Ying
AU - Sun, Hong
AU - Uddin, Md Helal
AU - Barr, Maïssa K.S.
AU - Wisser, Dorothea
AU - Roßmann, Philip
AU - Esper, Julian D.
AU - Tymek, Sarah
AU - Döhler, Dirk
AU - Peukert, Wolfgang
AU - Hartmann, Martin
AU - Bachmann, Julien
N1 - Publisher Copyright: © 2021 Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Ordered arrays of parallel, cylindrical silicon nanotubes are obtained by aluminothermic reduction of SiO2 nanotubes generated by atomic layer deposition (ALD) on nanoporous aluminum oxide templates. The reduction to amorphous Si (a-Si) is characterized by a combination of X-ray diffraction (XRD), solid-state cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP-MAS NMR), ultraviolet-visible spectroscopy, attenuated total reflectance infrared spectroscopy (ATR-IR), and X-ray photoelectron spectroscopy (XPS). These a-Si nanotube arrays are electrochemically active in a lithium-ion battery environment when prepared on Cu current collectors without any additives. The absence of the traditional additive carbon black, which is an electrochemically inert conductor, increases the proportion of capacity associated with faradaic reactions (Li incorporation) with respect to the capacitive component. Electrochemical impedance spectroscopy (EIS) and charge-discharge tests demonstrate that the nanotube morphology yields an improved tolerance to fast cycling.
AB - Ordered arrays of parallel, cylindrical silicon nanotubes are obtained by aluminothermic reduction of SiO2 nanotubes generated by atomic layer deposition (ALD) on nanoporous aluminum oxide templates. The reduction to amorphous Si (a-Si) is characterized by a combination of X-ray diffraction (XRD), solid-state cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP-MAS NMR), ultraviolet-visible spectroscopy, attenuated total reflectance infrared spectroscopy (ATR-IR), and X-ray photoelectron spectroscopy (XPS). These a-Si nanotube arrays are electrochemically active in a lithium-ion battery environment when prepared on Cu current collectors without any additives. The absence of the traditional additive carbon black, which is an electrochemically inert conductor, increases the proportion of capacity associated with faradaic reactions (Li incorporation) with respect to the capacitive component. Electrochemical impedance spectroscopy (EIS) and charge-discharge tests demonstrate that the nanotube morphology yields an improved tolerance to fast cycling.
KW - Aluminothermic reduction
KW - Anode material
KW - Atomic layer deposition
KW - Lithium ion battery
KW - Si nanotube
KW - THIN-FILMS
KW - AMORPHOUS-SILICON
KW - REDUCTION-ENABLED SYNTHESIS
KW - PERFORMANCE
KW - MAGNESIOTHERMIC REDUCTION
KW - NANOPARTICLES
KW - NEGATIVE ELECTRODES
KW - SURFACE
KW - HIGH-CAPACITY
KW - HOLLOW NANOSPHERES
UR - http://www.scopus.com/inward/record.url?scp=85107138067&partnerID=8YFLogxK
U2 - 10.1016/j.electacta.2021.138522
DO - 10.1016/j.electacta.2021.138522
M3 - Article
AN - SCOPUS:85107138067
VL - 388
JO - Electrochimica Acta
JF - Electrochimica Acta
SN - 0013-4686
M1 - 138522
ER -
ID: 77893284