Standard

An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. / Zhuo, Ying; Sun, Hong; Uddin, Md Helal; Barr, Maïssa K.S.; Wisser, Dorothea; Roßmann, Philip; Esper, Julian D.; Tymek, Sarah; Döhler, Dirk; Peukert, Wolfgang; Hartmann, Martin; Bachmann, Julien.

In: Electrochimica Acta, Vol. 388, 138522, 01.08.2021.

Research output: Contribution to journalArticlepeer-review

Harvard

Zhuo, Y, Sun, H, Uddin, MH, Barr, MKS, Wisser, D, Roßmann, P, Esper, JD, Tymek, S, Döhler, D, Peukert, W, Hartmann, M & Bachmann, J 2021, 'An additive-free silicon anode in nanotube morphology as a model lithium ion battery material', Electrochimica Acta, vol. 388, 138522. https://doi.org/10.1016/j.electacta.2021.138522

APA

Zhuo, Y., Sun, H., Uddin, M. H., Barr, M. K. S., Wisser, D., Roßmann, P., Esper, J. D., Tymek, S., Döhler, D., Peukert, W., Hartmann, M., & Bachmann, J. (2021). An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. Electrochimica Acta, 388, [138522]. https://doi.org/10.1016/j.electacta.2021.138522

Vancouver

Zhuo Y, Sun H, Uddin MH, Barr MKS, Wisser D, Roßmann P et al. An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. Electrochimica Acta. 2021 Aug 1;388. 138522. https://doi.org/10.1016/j.electacta.2021.138522

Author

Zhuo, Ying ; Sun, Hong ; Uddin, Md Helal ; Barr, Maïssa K.S. ; Wisser, Dorothea ; Roßmann, Philip ; Esper, Julian D. ; Tymek, Sarah ; Döhler, Dirk ; Peukert, Wolfgang ; Hartmann, Martin ; Bachmann, Julien. / An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. In: Electrochimica Acta. 2021 ; Vol. 388.

BibTeX

@article{ee2e9f76ac6c47e8b25c5d64fba601ff,
title = "An additive-free silicon anode in nanotube morphology as a model lithium ion battery material",
abstract = "Ordered arrays of parallel, cylindrical silicon nanotubes are obtained by aluminothermic reduction of SiO2 nanotubes generated by atomic layer deposition (ALD) on nanoporous aluminum oxide templates. The reduction to amorphous Si (a-Si) is characterized by a combination of X-ray diffraction (XRD), solid-state cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP-MAS NMR), ultraviolet-visible spectroscopy, attenuated total reflectance infrared spectroscopy (ATR-IR), and X-ray photoelectron spectroscopy (XPS). These a-Si nanotube arrays are electrochemically active in a lithium-ion battery environment when prepared on Cu current collectors without any additives. The absence of the traditional additive carbon black, which is an electrochemically inert conductor, increases the proportion of capacity associated with faradaic reactions (Li incorporation) with respect to the capacitive component. Electrochemical impedance spectroscopy (EIS) and charge-discharge tests demonstrate that the nanotube morphology yields an improved tolerance to fast cycling.",
keywords = "Aluminothermic reduction, Anode material, Atomic layer deposition, Lithium ion battery, Si nanotube, THIN-FILMS, AMORPHOUS-SILICON, REDUCTION-ENABLED SYNTHESIS, PERFORMANCE, MAGNESIOTHERMIC REDUCTION, NANOPARTICLES, NEGATIVE ELECTRODES, SURFACE, HIGH-CAPACITY, HOLLOW NANOSPHERES",
author = "Ying Zhuo and Hong Sun and Uddin, {Md Helal} and Barr, {Ma{\"i}ssa K.S.} and Dorothea Wisser and Philip Ro{\ss}mann and Esper, {Julian D.} and Sarah Tymek and Dirk D{\"o}hler and Wolfgang Peukert and Martin Hartmann and Julien Bachmann",
note = "Publisher Copyright: {\textcopyright} 2021 Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = aug,
day = "1",
doi = "10.1016/j.electacta.2021.138522",
language = "English",
volume = "388",
journal = "Electrochimica Acta",
issn = "0013-4686",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - An additive-free silicon anode in nanotube morphology as a model lithium ion battery material

AU - Zhuo, Ying

AU - Sun, Hong

AU - Uddin, Md Helal

AU - Barr, Maïssa K.S.

AU - Wisser, Dorothea

AU - Roßmann, Philip

AU - Esper, Julian D.

AU - Tymek, Sarah

AU - Döhler, Dirk

AU - Peukert, Wolfgang

AU - Hartmann, Martin

AU - Bachmann, Julien

N1 - Publisher Copyright: © 2021 Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/8/1

Y1 - 2021/8/1

N2 - Ordered arrays of parallel, cylindrical silicon nanotubes are obtained by aluminothermic reduction of SiO2 nanotubes generated by atomic layer deposition (ALD) on nanoporous aluminum oxide templates. The reduction to amorphous Si (a-Si) is characterized by a combination of X-ray diffraction (XRD), solid-state cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP-MAS NMR), ultraviolet-visible spectroscopy, attenuated total reflectance infrared spectroscopy (ATR-IR), and X-ray photoelectron spectroscopy (XPS). These a-Si nanotube arrays are electrochemically active in a lithium-ion battery environment when prepared on Cu current collectors without any additives. The absence of the traditional additive carbon black, which is an electrochemically inert conductor, increases the proportion of capacity associated with faradaic reactions (Li incorporation) with respect to the capacitive component. Electrochemical impedance spectroscopy (EIS) and charge-discharge tests demonstrate that the nanotube morphology yields an improved tolerance to fast cycling.

AB - Ordered arrays of parallel, cylindrical silicon nanotubes are obtained by aluminothermic reduction of SiO2 nanotubes generated by atomic layer deposition (ALD) on nanoporous aluminum oxide templates. The reduction to amorphous Si (a-Si) is characterized by a combination of X-ray diffraction (XRD), solid-state cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP-MAS NMR), ultraviolet-visible spectroscopy, attenuated total reflectance infrared spectroscopy (ATR-IR), and X-ray photoelectron spectroscopy (XPS). These a-Si nanotube arrays are electrochemically active in a lithium-ion battery environment when prepared on Cu current collectors without any additives. The absence of the traditional additive carbon black, which is an electrochemically inert conductor, increases the proportion of capacity associated with faradaic reactions (Li incorporation) with respect to the capacitive component. Electrochemical impedance spectroscopy (EIS) and charge-discharge tests demonstrate that the nanotube morphology yields an improved tolerance to fast cycling.

KW - Aluminothermic reduction

KW - Anode material

KW - Atomic layer deposition

KW - Lithium ion battery

KW - Si nanotube

KW - THIN-FILMS

KW - AMORPHOUS-SILICON

KW - REDUCTION-ENABLED SYNTHESIS

KW - PERFORMANCE

KW - MAGNESIOTHERMIC REDUCTION

KW - NANOPARTICLES

KW - NEGATIVE ELECTRODES

KW - SURFACE

KW - HIGH-CAPACITY

KW - HOLLOW NANOSPHERES

UR - http://www.scopus.com/inward/record.url?scp=85107138067&partnerID=8YFLogxK

U2 - 10.1016/j.electacta.2021.138522

DO - 10.1016/j.electacta.2021.138522

M3 - Article

AN - SCOPUS:85107138067

VL - 388

JO - Electrochimica Acta

JF - Electrochimica Acta

SN - 0013-4686

M1 - 138522

ER -

ID: 77893284