Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A note on the concurrent normal conjecture. / Grebennikov, A.; Panina, G.
в: Acta Mathematica Hungarica, Том 167, № 2, 08.2022, стр. 529-532.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - A note on the concurrent normal conjecture
AU - Grebennikov, A.
AU - Panina, G.
N1 - Publisher Copyright: © 2022, Akadémiai Kiadó, Budapest, Hungary.
PY - 2022/8
Y1 - 2022/8
N2 - It is conjectured since long that for anyconvex body K∈ Rn there exists a point inthe interior of K which belongs to at least 2n normals from different points on theboundary of K. The conjecture is known to be true for n = 2, 3, 4. Motivated by a recent preprint of Y. Martinez-Maure [4], we give a short proof of his result: for dimension n≥ 3 , under mild conditions, almost every normalthrough a boundary point to a smooth convex body K∈ Rn contains an intersection point of at least 6 normals from different points on the boundary of K.
AB - It is conjectured since long that for anyconvex body K∈ Rn there exists a point inthe interior of K which belongs to at least 2n normals from different points on theboundary of K. The conjecture is known to be true for n = 2, 3, 4. Motivated by a recent preprint of Y. Martinez-Maure [4], we give a short proof of his result: for dimension n≥ 3 , under mild conditions, almost every normalthrough a boundary point to a smooth convex body K∈ Rn contains an intersection point of at least 6 normals from different points on the boundary of K.
KW - bifurcation
KW - Morse point
KW - Morse–Cerf theory
UR - http://www.scopus.com/inward/record.url?scp=85134704857&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/f4ce48a0-80c6-353f-9fa9-4a4690780d61/
U2 - 10.1007/s10474-022-01251-0
DO - 10.1007/s10474-022-01251-0
M3 - Article
AN - SCOPUS:85134704857
VL - 167
SP - 529
EP - 532
JO - Acta Mathematica Hungarica
JF - Acta Mathematica Hungarica
SN - 0236-5294
IS - 2
ER -
ID: 98340849