DOI

It is conjectured since long that for anyconvex body K∈ Rn there exists a point inthe interior of K which belongs to at least 2n normals from different points on theboundary of K. The conjecture is known to be true for n = 2, 3, 4. Motivated by a recent preprint of Y. Martinez-Maure [4], we give a short proof of his result: for dimension n≥ 3 , under mild conditions, almost every normalthrough a boundary point to a smooth convex body K∈ Rn contains an intersection point of at least 6 normals from different points on the boundary of K.

Язык оригиналаанглийский
Страницы (с-по)529-532
Число страниц4
ЖурналActa Mathematica Hungarica
Том167
Номер выпуска2
Дата раннего онлайн-доступа22 июл 2022
DOI
СостояниеОпубликовано - авг 2022

    Предметные области Scopus

  • Математика (все)

ID: 98340849