Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
It is conjectured since long that for anyconvex body K∈ Rn there exists a point inthe interior of K which belongs to at least 2n normals from different points on theboundary of K. The conjecture is known to be true for n = 2, 3, 4. Motivated by a recent preprint of Y. Martinez-Maure [4], we give a short proof of his result: for dimension n≥ 3 , under mild conditions, almost every normalthrough a boundary point to a smooth convex body K∈ Rn contains an intersection point of at least 6 normals from different points on the boundary of K.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 529-532 |
Число страниц | 4 |
Журнал | Acta Mathematica Hungarica |
Том | 167 |
Номер выпуска | 2 |
Дата раннего онлайн-доступа | 22 июл 2022 |
DOI | |
Состояние | Опубликовано - авг 2022 |
ID: 98340849