Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A Nonperiodic Spline Analog of the Akhiezer–Krein–Favard Operators. / Vinogradov, O. L.; Gladkaya, A. V.
в: Journal of Mathematical Sciences (United States), Том 217, № 1, 01.08.2016, стр. 3-22.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - A Nonperiodic Spline Analog of the Akhiezer–Krein–Favard Operators
AU - Vinogradov, O. L.
AU - Gladkaya, A. V.
N1 - Vinogradov, O.L., Gladkaya, A.V. A Nonperiodic Spline Analog of the Akhiezer–Krein–Favard Operators. J Math Sci 217, 3–22 (2016). https://doi.org/10.1007/s10958-016-2950-7
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Let σ > 0, m, r ∈ ℕ, m ≥ r, let Sσ,m be the space of splines of order m and minimal defect with nodes jπσ (j ∈ ℤ), and let Aσ,m(f)p be the best approximation of a function f by the set Sσ,m in the space Lp(ℝ). It is known that for p = 1,+∞, (Formula presented.) where Kr are the Favard constants. In this paper, linear operators Xσ,r,m with values in Sσ,m such that for all p ∈ [1,+∞] and f ∈ Wp (r)(ℝ),ǁf−Xσ,r,m(f)ǁp≤Kr/σrǁf(r)ǁp are constructed. This proves that the upper bounds indicated above can be achieved by linear methods of approximation, which was previously unknown. Bibliography: 21 titles.
AB - Let σ > 0, m, r ∈ ℕ, m ≥ r, let Sσ,m be the space of splines of order m and minimal defect with nodes jπσ (j ∈ ℤ), and let Aσ,m(f)p be the best approximation of a function f by the set Sσ,m in the space Lp(ℝ). It is known that for p = 1,+∞, (Formula presented.) where Kr are the Favard constants. In this paper, linear operators Xσ,r,m with values in Sσ,m such that for all p ∈ [1,+∞] and f ∈ Wp (r)(ℝ),ǁf−Xσ,r,m(f)ǁp≤Kr/σrǁf(r)ǁp are constructed. This proves that the upper bounds indicated above can be achieved by linear methods of approximation, which was previously unknown. Bibliography: 21 titles.
UR - http://www.scopus.com/inward/record.url?scp=84978173187&partnerID=8YFLogxK
U2 - 10.1007/s10958-016-2950-7
DO - 10.1007/s10958-016-2950-7
M3 - Article
AN - SCOPUS:84978173187
VL - 217
SP - 3
EP - 22
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 1
ER -
ID: 15680306