Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let σ > 0, m, r ∈ ℕ, m ≥ r, let Sσ,m be the space of splines of order m and minimal defect with nodes jπσ (j ∈ ℤ), and let Aσ,m(f)p be the best approximation of a function f by the set Sσ,m in the space Lp(ℝ). It is known that for p = 1,+∞, (Formula presented.) where Kr are the Favard constants. In this paper, linear operators Xσ,r,m with values in Sσ,m such that for all p ∈ [1,+∞] and f ∈ Wp (r)(ℝ),ǁf−Xσ,r,m(f)ǁp≤Kr/σrǁf(r)ǁp are constructed. This proves that the upper bounds indicated above can be achieved by linear methods of approximation, which was previously unknown. Bibliography: 21 titles.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 3-22 |
Число страниц | 20 |
Журнал | Journal of Mathematical Sciences (United States) |
Том | 217 |
Номер выпуска | 1 |
Дата раннего онлайн-доступа | 7 июл 2016 |
DOI | |
Состояние | Опубликовано - 1 авг 2016 |
ID: 15680306