Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
РАСШИРЕНИЕ КЛАССА СТАБИЛИЗИРУЕМЫХ НЕЛИНЕЙНЫХ ДИСКРЕТНЫХ СИСТЕМ The extension of class of stabilizable discrete-time nonlinear systems. / Зубер, И. Е.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 1: МАТЕМАТИКА, МЕХАНИКА, АСТРОНОМИЯ, № 3, 2008, стр. 19-24.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - РАСШИРЕНИЕ КЛАССА СТАБИЛИЗИРУЕМЫХ НЕЛИНЕЙНЫХ ДИСКРЕТНЫХ СИСТЕМ The extension of class of stabilizable discrete-time nonlinear systems
AU - Зубер, И. Е.
PY - 2008
Y1 - 2008
N2 - Расширение класса стабилизируемых нелинейных дискретных систем производится в три этапа. На первом этапе рассматривается нелинейная дискретная система с матрицей, элементы которой ограничены по модулю сверху, элементы первой наддиагонали отделены от нуля, элементы выше первой наддиагонали нули. Управление строится в виде скалярной обратной связи по состоянию. На первом этапе вектор распределения управления есть последний единичный орт. Формируется функция Ляпунова в виде квадратичной формы с постоянной диагональной матрицей и определяется вектор обратной связи, обеспечивающий устойчивость в целом замкнутой системы. На втором этапе предполагается, что элементы матрицы, расположенные выше первой наддиагонали являются ограниченными функциями. Определяются такие верхние грани этих функций, что стабилизирующее управление, построенное на первом этапе, обеспечивает устойчивость в целом рассматриваемой на втором этапе системы. На третьем этапе производится расширение вида вектора распределения управления. Определяетс
AB - Расширение класса стабилизируемых нелинейных дискретных систем производится в три этапа. На первом этапе рассматривается нелинейная дискретная система с матрицей, элементы которой ограничены по модулю сверху, элементы первой наддиагонали отделены от нуля, элементы выше первой наддиагонали нули. Управление строится в виде скалярной обратной связи по состоянию. На первом этапе вектор распределения управления есть последний единичный орт. Формируется функция Ляпунова в виде квадратичной формы с постоянной диагональной матрицей и определяется вектор обратной связи, обеспечивающий устойчивость в целом замкнутой системы. На втором этапе предполагается, что элементы матрицы, расположенные выше первой наддиагонали являются ограниченными функциями. Определяются такие верхние грани этих функций, что стабилизирующее управление, построенное на первом этапе, обеспечивает устойчивость в целом рассматриваемой на втором этапе системы. На третьем этапе производится расширение вида вектора распределения управления. Определяетс
M3 - статья
SP - 19
EP - 24
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 3
ER -
ID: 5155024