Standard

Асимптотика решений стационарной и нестационарной систем Максвелла в области с малыми отверстиями. / Кориков, Д.В.; Пламеневский, Б.А.

в: АЛГЕБРА И АНАЛИЗ, Том 28, № 4, 2016, стр. 102–170.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{6cf2100d2cf943e2a919e3de939caf47,
title = "Асимптотика решений стационарной и нестационарной систем Максвелла в области с малыми отверстиями",
abstract = "В ограниченной области с конечным числом малых отверстий при всех временах t∈R рассматривается нестационарная система уравнений Максвелла. Диаметры отверстий пропорциональны малому параметру ε. На границе области заданы условия идеальной проводимости или импедансные краевые условия. Выводится асимптотика решения при ε→0. Малые отверстия являются “сингулярными” возмущениями области: при ε→0 они переходят в выколотые точки. Представленная математическая модель описывает поведение электромагнитного поля внутри проводящего резонатора с включениями металлических частиц малых размеров. Такая модель может иметь приложения к диагностике плазмы, загрязненной металлическими частицами и заполняющей резонатор. Для описания асимптотики решений применяется метод составных асимптотических разложений. В этом методе асимптотика решения составляется из решений так называемых предельных задач, не зависящих от ε. При этом одна из предельных задач оказывается нестационарной задачей в области с особыми точками на границе. Остальн",
keywords = "динамическая система Максвелла, сингулярно возмущенные области, импедансные краевые условия, асимптотика решений.",
author = "Д.В. Кориков and Б.А. Пламеневский",
year = "2016",
language = "русский",
volume = "28",
pages = "102–170",
journal = "АЛГЕБРА И АНАЛИЗ",
issn = "0234-0852",
publisher = "Издательство {"}Наука{"}",
number = "4",

}

RIS

TY - JOUR

T1 - Асимптотика решений стационарной и нестационарной систем Максвелла в области с малыми отверстиями

AU - Кориков, Д.В.

AU - Пламеневский, Б.А.

PY - 2016

Y1 - 2016

N2 - В ограниченной области с конечным числом малых отверстий при всех временах t∈R рассматривается нестационарная система уравнений Максвелла. Диаметры отверстий пропорциональны малому параметру ε. На границе области заданы условия идеальной проводимости или импедансные краевые условия. Выводится асимптотика решения при ε→0. Малые отверстия являются “сингулярными” возмущениями области: при ε→0 они переходят в выколотые точки. Представленная математическая модель описывает поведение электромагнитного поля внутри проводящего резонатора с включениями металлических частиц малых размеров. Такая модель может иметь приложения к диагностике плазмы, загрязненной металлическими частицами и заполняющей резонатор. Для описания асимптотики решений применяется метод составных асимптотических разложений. В этом методе асимптотика решения составляется из решений так называемых предельных задач, не зависящих от ε. При этом одна из предельных задач оказывается нестационарной задачей в области с особыми точками на границе. Остальн

AB - В ограниченной области с конечным числом малых отверстий при всех временах t∈R рассматривается нестационарная система уравнений Максвелла. Диаметры отверстий пропорциональны малому параметру ε. На границе области заданы условия идеальной проводимости или импедансные краевые условия. Выводится асимптотика решения при ε→0. Малые отверстия являются “сингулярными” возмущениями области: при ε→0 они переходят в выколотые точки. Представленная математическая модель описывает поведение электромагнитного поля внутри проводящего резонатора с включениями металлических частиц малых размеров. Такая модель может иметь приложения к диагностике плазмы, загрязненной металлическими частицами и заполняющей резонатор. Для описания асимптотики решений применяется метод составных асимптотических разложений. В этом методе асимптотика решения составляется из решений так называемых предельных задач, не зависящих от ε. При этом одна из предельных задач оказывается нестационарной задачей в области с особыми точками на границе. Остальн

KW - динамическая система Максвелла

KW - сингулярно возмущенные области

KW - импедансные краевые условия

KW - асимптотика решений.

M3 - статья

VL - 28

SP - 102

EP - 170

JO - АЛГЕБРА И АНАЛИЗ

JF - АЛГЕБРА И АНАЛИЗ

SN - 0234-0852

IS - 4

ER -

ID: 7588317