Standard

Оценки в методе рядов Тейлора для полиномиальных полных систем УрЧП. / Бабаджанянц, Левон Константинович; Пупышева, Юлия Юрьевна; Потоцкая, Ирина Юрьевна.

в: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Том 17, № 1, 3, 2021, стр. 27-39.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{473d7c6f4a7c4d6699e64258565fec76,
title = "Оценки в методе рядов Тейлора для полиномиальных полных систем УрЧП",
abstract = "Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.",
keywords = "Numerical PDE system integration, Polynomial system, Taylor series method, Total polynomial PDE system, Taylor Series Method, numerical PDE system integration, polynomial system, total polynomial PDE system, Polynomial system, Numerical PDE system integration, Taylor series method, Total polynomial PDE system",
author = "Бабаджанянц, {Левон Константинович} and Пупышева, {Юлия Юрьевна} and Потоцкая, {Ирина Юрьевна}",
year = "2021",
doi = "10.21638/11701/spbu10.2021.103",
language = "русский",
volume = "17",
pages = "27--39",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Оценки в методе рядов Тейлора для полиномиальных полных систем УрЧП

AU - Бабаджанянц, Левон Константинович

AU - Пупышева, Юлия Юрьевна

AU - Потоцкая, Ирина Юрьевна

PY - 2021

Y1 - 2021

N2 - Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.

AB - Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.

KW - Numerical PDE system integration

KW - Polynomial system

KW - Taylor series method

KW - Total polynomial PDE system

KW - Taylor Series Method

KW - numerical PDE system integration

KW - polynomial system

KW - total polynomial PDE system

KW - Polynomial system

KW - Numerical PDE system integration

KW - Taylor series method

KW - Total polynomial PDE system

UR - http://www.scopus.com/inward/record.url?scp=85106622035&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/f36419c3-c1a6-3bd0-b852-777f9dde2ea3/

U2 - 10.21638/11701/spbu10.2021.103

DO - 10.21638/11701/spbu10.2021.103

M3 - статья

VL - 17

SP - 27

EP - 39

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 1

M1 - 3

ER -

ID: 76945975