Research output: Contribution to journal › Article › peer-review
Оценки в методе рядов Тейлора для полиномиальных полных систем УрЧП. / Бабаджанянц, Левон Константинович; Пупышева, Юлия Юрьевна; Потоцкая, Ирина Юрьевна.
In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Vol. 17, No. 1, 3, 2021, p. 27-39.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Оценки в методе рядов Тейлора для полиномиальных полных систем УрЧП
AU - Бабаджанянц, Левон Константинович
AU - Пупышева, Юлия Юрьевна
AU - Потоцкая, Ирина Юрьевна
PY - 2021
Y1 - 2021
N2 - Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.
AB - Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.
KW - Numerical PDE system integration
KW - Polynomial system
KW - Taylor series method
KW - Total polynomial PDE system
KW - Taylor Series Method
KW - numerical PDE system integration
KW - polynomial system
KW - total polynomial PDE system
KW - Polynomial system
KW - Numerical PDE system integration
KW - Taylor series method
KW - Total polynomial PDE system
UR - http://www.scopus.com/inward/record.url?scp=85106622035&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/f36419c3-c1a6-3bd0-b852-777f9dde2ea3/
U2 - 10.21638/11701/spbu10.2021.103
DO - 10.21638/11701/spbu10.2021.103
M3 - статья
VL - 17
SP - 27
EP - 39
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 1
M1 - 3
ER -
ID: 76945975