Ссылки

DOI

В работе строятся так называемые кольца сходимости кольца целых многомерного локального поля. Кольцо сходимости - это подкольцо кольца целых, обладающее тем свойством, что любой степенной ряд с коэффициентами из подкольца сходится при подстановке вместо переменной произвольного элемента максимального идеала. Выводятся свойства колец сходимости и явная формула для их построения. Заметим, что многомерный случай принципиально отличается от случая классического (одномерного) локального поля, где кольцом сходимости является все кольцо целых. Далее рассматривается многомерное локальное поле с нулевой характеристикой предпоследнего поля вычетов. Для каждого кольца сходимости такого поля вводится гомоморфизм, позволяющий по степенному ряду с коэффициентами из кольца построить формальную группу над тем же кольцом с логарифмом, имеющем коэффициенты из поля, причем для коэффициентов задается явная формула. Кроме того, по изогении с коэффициентами из кольца сходимости строится обобщение понятия формальной группы Любина-Т
Язык оригиналарусский
Страницы (с-по)88-97
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том6
Номер выпуска1
DOI
СостояниеОпубликовано - 2019

    Области исследований

  • convergence of power series, Lubin-Tate formal group, multidimensional local field, многомерные локальные поля, сходимость степенных рядов, формальные группы Любина-Тейта

ID: 78506557