Standard

Методы интегрирования систем структурно разделенных дифференциальных уравнений. / Олемской, И.В.

Издательство Санкт-Петербургского университета, 2009. 180 стр.

Результаты исследований: Книги, отчёты, сборникикнига, в т.ч. монография, учебникнаучная

Harvard

APA

Vancouver

Author

BibTeX

@book{e2d7e36a3f38419d84ef058776c80618,
title = "Методы интегрирования систем структурно разделенных дифференциальных уравнений",
abstract = "В монографии дана общая схема явного метода Рунге-Кутты интегрирования систем обыкновенных дифференциальных уравнений. Рассматриваются основные принципы использования структурных особенностей систем обыкновенных дифференциальных уравнений при конструировании экономичных явных одношаговых методов типа Рунге-Кутты. Представлена классификация структурных особенностей и выписаны методы интегрирования для каждого из выделенных в этой классификации типов систем. Рассмотрена методика исследования условий порядка и построены для каждого класса экономичные расчетные схемы интегрирования нарушающие барьеры Бутчера. Выписан алгоритм выделения в произвольной системе обыкновенных дифференциальных уравнений структурных особенностей нужного типа и приведения ее к специальному виду.",
keywords = "Явный, одношаговый, порядок метода, задача Коши.",
author = "И.В. Олемской",
year = "2009",
language = "не определен",
isbn = "978-5-288-04970-5",
publisher = "Издательство Санкт-Петербургского университета",
address = "Российская Федерация",

}

RIS

TY - BOOK

T1 - Методы интегрирования систем структурно разделенных дифференциальных уравнений

AU - Олемской, И.В.

PY - 2009

Y1 - 2009

N2 - В монографии дана общая схема явного метода Рунге-Кутты интегрирования систем обыкновенных дифференциальных уравнений. Рассматриваются основные принципы использования структурных особенностей систем обыкновенных дифференциальных уравнений при конструировании экономичных явных одношаговых методов типа Рунге-Кутты. Представлена классификация структурных особенностей и выписаны методы интегрирования для каждого из выделенных в этой классификации типов систем. Рассмотрена методика исследования условий порядка и построены для каждого класса экономичные расчетные схемы интегрирования нарушающие барьеры Бутчера. Выписан алгоритм выделения в произвольной системе обыкновенных дифференциальных уравнений структурных особенностей нужного типа и приведения ее к специальному виду.

AB - В монографии дана общая схема явного метода Рунге-Кутты интегрирования систем обыкновенных дифференциальных уравнений. Рассматриваются основные принципы использования структурных особенностей систем обыкновенных дифференциальных уравнений при конструировании экономичных явных одношаговых методов типа Рунге-Кутты. Представлена классификация структурных особенностей и выписаны методы интегрирования для каждого из выделенных в этой классификации типов систем. Рассмотрена методика исследования условий порядка и построены для каждого класса экономичные расчетные схемы интегрирования нарушающие барьеры Бутчера. Выписан алгоритм выделения в произвольной системе обыкновенных дифференциальных уравнений структурных особенностей нужного типа и приведения ее к специальному виду.

KW - Явный

KW - одношаговый

KW - порядок метода

KW - задача Коши.

M3 - книга, в т.ч. монография, учебник

SN - 978-5-288-04970-5

BT - Методы интегрирования систем структурно разделенных дифференциальных уравнений

PB - Издательство Санкт-Петербургского университета

ER -

ID: 4254281