Работа выполнена при частичной финансовой поддержке Совета по грантам Президента РФ для государственной поддержки молодых российских ученых и ведущих научных школ (грант № НШ-2387.2008.1) и РФФИ (грант № 09-01-00245). Зубер И.Е., Гелиг А.Х. Устойчивость неопределённых систем // Вестн. С.-Петерб. ун-та. Сер. 1. 2009. Вып. 2. С. 23-30. Рассматривается непрерывная система dx/dt = A(∙)x, у которой элементы m × m-матрицы A(∙) ограничены и являются функционалами произвольной природы. Известны лишь границы изменения коэффициентов. Предполагается, что выполнена локальная теорема существования решения и продолжимость при всех t > 0 любого решения, остающегося в ограниченной области. С помощью построения функции Ляпунова в виде квадратичной формы с якобиевой матрицей коэффициентов получены соотношения между границами изменения коэффициетов системы, при которых система экспоненциально устойчива в целом. Изучается также импульсная система, полученная из исходной заменой элементов, стоящих на главной диагонали, синхронным