Standard

Harvard

APA

Vancouver

Author

BibTeX

@article{3e7a762270c14d9f8bf80b2ddcc77f55,
title = "Transcranial direct-current stimulation of core language areas facilitates novel word acquisition",
abstract = "Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can alter the state of the stimulated brain area and thereby affect neurocognitive processes and resulting behavioural performance. Previous studies using tDCS to address the language function have shown disparate results, particularly with respect to language learning and word acquisition. To fill this gap, this study aimed at systematically addressing the effects of tDCS of core left-hemispheric language cortices on the brain mechanisms underpinning two main neurocognitive strategies of word learning: implicit inference-based Fast Mapping (FM) and direct instruction-based Explicit Encoding (EE). Prior to a word-learning session, 160 healthy participants were given 15 min of either anodal or cathodal tDCS of Wernicke's or Broca's areas, or a control sham (placebo) stimulation, in a between-group design. Each participant then learned sixteen novel words (eight through FM and eight through EE) in a contextual word-picture association session. Moreover, these words were learnt either perceptually via auditory exposure combined with a graphical image of the novel object, or in an articulatory mode, where the participants additionally had to overtly articulate the novel items. These learning conditions were fully counterbalanced across participants, stimuli and tDCS groups. Learning outcomes were tested at both lexical and semantic levels using two tasks: recognition and word-picture matching. EE and FM conditions produced similar outcomes, indicating comparable efficiency of the respective learning strategies. At the same time, articulatory learning produced generally better results than non-articulatory exposure, yielding higher recognition accuracies and shorter latencies in both tasks. Crucially, real tDCS led to global outcome improvements, demonstrated by faster (compared to sham) reactions, as well as some accuracy changes. There was also evidence of more specific tDCS effects: better word-recognition accuracy for EE vs. FM following cathodal stimulation as well as more expressed improvements in recognition accuracy and reaction times for anodal Broca's and cathodal Wernicke's stimulation, particularly for unarticulated FM items. These learning mode-specific effects support the notion of partially distinct brain mechanisms underpinning these two learning strategies. Overall, numerically largest improvements were observed for anodal Broca's tDCS, whereas the least expressed benefits of tDCS for learning were measured after anodal Wernicke stimulation. Finally, we did not find any inhibitory effects of either tDCS polarity in any of the comparisons. We conclude that tDCS of core language areas exerts a general facilitatory effect on new word acquisition with some limited specificity to learning protocols – the result that may be of potential applied value for future research aimed at ameliorating learning deficits and language disorders.",
keywords = "Articulation, Brain, Broca's area, Cortex, Explicit encoding (EE), Fast mapping (FM), Language acquisition, Memory trace, Neuromodulation, Non-invasive brain stimulation (NIBS), Transcranial direct current stimulation (tDCS), Wernicke's area, Word learning",
author = "Штыров, {Юрий Юрьевич} and Перикова, {Екатерина Игоревна} and Филиппова, {Маргарита Георгиевна} and Кирсанов, {Александр Сергеевич} and Благовещенский, {Евгений Дмитриевич} and Щербакова, {Ольга Владимировна}",
year = "2024",
month = dec,
day = "1",
doi = "10.1016/j.nlm.2024.107992",
language = "English",
volume = "216",
journal = "Neurobiology of Learning and Memory",
issn = "1074-7427",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Transcranial direct-current stimulation of core language areas facilitates novel word acquisition

AU - Штыров, Юрий Юрьевич

AU - Перикова, Екатерина Игоревна

AU - Филиппова, Маргарита Георгиевна

AU - Кирсанов, Александр Сергеевич

AU - Благовещенский, Евгений Дмитриевич

AU - Щербакова, Ольга Владимировна

PY - 2024/12/1

Y1 - 2024/12/1

N2 - Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can alter the state of the stimulated brain area and thereby affect neurocognitive processes and resulting behavioural performance. Previous studies using tDCS to address the language function have shown disparate results, particularly with respect to language learning and word acquisition. To fill this gap, this study aimed at systematically addressing the effects of tDCS of core left-hemispheric language cortices on the brain mechanisms underpinning two main neurocognitive strategies of word learning: implicit inference-based Fast Mapping (FM) and direct instruction-based Explicit Encoding (EE). Prior to a word-learning session, 160 healthy participants were given 15 min of either anodal or cathodal tDCS of Wernicke's or Broca's areas, or a control sham (placebo) stimulation, in a between-group design. Each participant then learned sixteen novel words (eight through FM and eight through EE) in a contextual word-picture association session. Moreover, these words were learnt either perceptually via auditory exposure combined with a graphical image of the novel object, or in an articulatory mode, where the participants additionally had to overtly articulate the novel items. These learning conditions were fully counterbalanced across participants, stimuli and tDCS groups. Learning outcomes were tested at both lexical and semantic levels using two tasks: recognition and word-picture matching. EE and FM conditions produced similar outcomes, indicating comparable efficiency of the respective learning strategies. At the same time, articulatory learning produced generally better results than non-articulatory exposure, yielding higher recognition accuracies and shorter latencies in both tasks. Crucially, real tDCS led to global outcome improvements, demonstrated by faster (compared to sham) reactions, as well as some accuracy changes. There was also evidence of more specific tDCS effects: better word-recognition accuracy for EE vs. FM following cathodal stimulation as well as more expressed improvements in recognition accuracy and reaction times for anodal Broca's and cathodal Wernicke's stimulation, particularly for unarticulated FM items. These learning mode-specific effects support the notion of partially distinct brain mechanisms underpinning these two learning strategies. Overall, numerically largest improvements were observed for anodal Broca's tDCS, whereas the least expressed benefits of tDCS for learning were measured after anodal Wernicke stimulation. Finally, we did not find any inhibitory effects of either tDCS polarity in any of the comparisons. We conclude that tDCS of core language areas exerts a general facilitatory effect on new word acquisition with some limited specificity to learning protocols – the result that may be of potential applied value for future research aimed at ameliorating learning deficits and language disorders.

AB - Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can alter the state of the stimulated brain area and thereby affect neurocognitive processes and resulting behavioural performance. Previous studies using tDCS to address the language function have shown disparate results, particularly with respect to language learning and word acquisition. To fill this gap, this study aimed at systematically addressing the effects of tDCS of core left-hemispheric language cortices on the brain mechanisms underpinning two main neurocognitive strategies of word learning: implicit inference-based Fast Mapping (FM) and direct instruction-based Explicit Encoding (EE). Prior to a word-learning session, 160 healthy participants were given 15 min of either anodal or cathodal tDCS of Wernicke's or Broca's areas, or a control sham (placebo) stimulation, in a between-group design. Each participant then learned sixteen novel words (eight through FM and eight through EE) in a contextual word-picture association session. Moreover, these words were learnt either perceptually via auditory exposure combined with a graphical image of the novel object, or in an articulatory mode, where the participants additionally had to overtly articulate the novel items. These learning conditions were fully counterbalanced across participants, stimuli and tDCS groups. Learning outcomes were tested at both lexical and semantic levels using two tasks: recognition and word-picture matching. EE and FM conditions produced similar outcomes, indicating comparable efficiency of the respective learning strategies. At the same time, articulatory learning produced generally better results than non-articulatory exposure, yielding higher recognition accuracies and shorter latencies in both tasks. Crucially, real tDCS led to global outcome improvements, demonstrated by faster (compared to sham) reactions, as well as some accuracy changes. There was also evidence of more specific tDCS effects: better word-recognition accuracy for EE vs. FM following cathodal stimulation as well as more expressed improvements in recognition accuracy and reaction times for anodal Broca's and cathodal Wernicke's stimulation, particularly for unarticulated FM items. These learning mode-specific effects support the notion of partially distinct brain mechanisms underpinning these two learning strategies. Overall, numerically largest improvements were observed for anodal Broca's tDCS, whereas the least expressed benefits of tDCS for learning were measured after anodal Wernicke stimulation. Finally, we did not find any inhibitory effects of either tDCS polarity in any of the comparisons. We conclude that tDCS of core language areas exerts a general facilitatory effect on new word acquisition with some limited specificity to learning protocols – the result that may be of potential applied value for future research aimed at ameliorating learning deficits and language disorders.

KW - Articulation

KW - Brain

KW - Broca's area

KW - Cortex

KW - Explicit encoding (EE)

KW - Fast mapping (FM)

KW - Language acquisition

KW - Memory trace

KW - Neuromodulation

KW - Non-invasive brain stimulation (NIBS)

KW - Transcranial direct current stimulation (tDCS)

KW - Wernicke's area

KW - Word learning

UR - https://www.mendeley.com/catalogue/bf240d11-da0f-3f78-be4d-0bb5b4d89fec/

U2 - 10.1016/j.nlm.2024.107992

DO - 10.1016/j.nlm.2024.107992

M3 - Article

VL - 216

JO - Neurobiology of Learning and Memory

JF - Neurobiology of Learning and Memory

SN - 1074-7427

M1 - 107992

ER -

ID: 127258321