The thermal behavior of pyrochlores composing of Bi1·5Mg0.75M1.5O6.75 (M = Nb, Ta) (sp. gr. Fd-3m:2) was studied using the high-temperature X-ray powder diffraction in a wide temperature range of 30–1200 °C. At a temperature above 1080 °C both compounds thermally dissociate forming one of the reaction products MgMO6 (M = Nb, Ta) whose reflexes are traced on X-ray diffraction patterns after cooling the sample down to room temperature. In the case of Bi1·5Mg0·75Nb1·5O6.75 orthoniobate α-BiNbO4 forms at about 800–1020 °C as admixture. The thermal expansion analysis of Bi1·5Mg0.75M1.5O6.75 (M = Nb, Ta) showed that the compounds studied belong to slightly or moderately expanding materials. Thermal expansion for both compounds is isotropic. With a rise in temperature the unit cell parameter a and the thermal expansion coefficient (TEC) are increased uniformly and slightly for M = Ta (Nb): from 10.52822 (10.55325) Å (30 °C) up to 10.59181 (10.62801) Å (1050 °C) and from 3.8 (30 °C) up to 7.4 (8.9) × 10−6 °С−1 at 800 °C respectively. The average TEC values in the range of 30–800 °C range are 5.6 (6.4) × 10−6 °C−1 for M = Ta (Nb) respectively. Bi1.5Mg0.75Nb1.5O6.75 is characterized with the highest thermal expansion that may be related to the longer bond-length of Nb(Bi)–O in the polyhedra.

Original languageEnglish
Pages (from-to)30099-30105
Number of pages7
JournalCeramics International
Volume47
Issue number21
DOIs
StatePublished - 1 Nov 2021

    Research areas

  • Bismuth magnesium niobate, Bismuth magnesium tantalate, Ceramics, Thermal expansion pyrochlore, niobate, Bismuth magnesium&nbsp, BEHAVIOR, ELECTRICAL-PROPERTIES, RELAXATION, Bismuth magnesium tantalate&nbsp, pyrochlore, SUBSOLIDUS PHASE-EQUILIBRIA, DIELECTRIC-PROPERTIES, Thermal expansion&nbsp, CERAMICS

    Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Process Chemistry and Technology

ID: 84618776