The paper is devoted to asymptotic behavior of synchronization systems, i.e. Lur'e–type systems with periodic nonlinearities and infinite sets of equilibrum. This class of systems can not be efficiently investigated by standard Lyapunov functions. That is why for synchronization systems several new methods have been elaborated in the framework of Lyapunov direct method. Two of them: the method of periodic Lyapunov functions and the nonlocal reduction method, proved to be rather efficient. In this paper we combine these two methods and the Kalman-Yakubovich-Popov lemma to obtain new frequency–algebraic criteria ensuring Lagrange stability and the convergence of solutions.
Translated title of the contributionРазвитие прямого метода Ляпунова в применении к системам синхронизации
Original languageEnglish
Article number012065
JournalJournal of Physics: Conference Series
Volume1864
Issue number1
DOIs
StatePublished - 2021
Event13th Multiconference on Control Problems, MCCP 2020: Математическая теория управления и ее приложения (МТУиП) - ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», Санкт-Петербург, Russian Federation
Duration: 6 Oct 20208 Oct 2020
Conference number: 13
http://www.elektropribor.spb.ru/nauchnaya-deyatelnost/xiii-mkpu/index3.php

    Scopus subject areas

  • Physics and Astronomy(all)

ID: 86202152