Research output: Contribution to journal › Article › peer-review
Flexible crystal() structures, which exhibit() single-crystal()-to-single-crystal() (SCSC) transformations(), are attracting attention() in many applied aspects: magnetic() switches, catalysis, ferroelectrics and sorption. Acid treatment() for titanosilicate material() AM-4 and natural() compounds with the same structures led to SCSC transformation() by loss() Na +, Li + and Zn 2+ cations with large structural() changes (20% of the unit()-cell() volume()). The conservation() of crystallinity through complex() transformation() is possible due() to the formation() of a strong hydrogen bonding() system(). The mechanism() of transformation() has been characterized using single-crystal() X-ray() diffraction analysis(), powder() diffraction, Rietvield refinement, Raman spectroscopy and electron microscopy. The low migration() energy() of cations in the considered materials() is confirmed using bond()-valence and density() functional() theory() calculations, and the ion conductivity of the AM-4 family's materials() has been experimentally verified.
Original language | English |
---|---|
Article number | 111 |
Journal | Materials |
Volume | 17 |
Issue number | 1 |
DOIs | |
State | Published - 2024 |
ID: 116381738