Research output: Contribution to journal › Article › peer-review
Studying the potential of rock magnetism to distinguish combustion structures of different type. / Kostadinova-Avramova, Maria; Dimitrov, Petar; Kosterov, Andrei; Surovitskii, Leonid.
In: Journal of Archaeological Science, Vol. 144, 105639, 01.08.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Studying the potential of rock magnetism to distinguish combustion structures of different type
AU - Kostadinova-Avramova, Maria
AU - Dimitrov, Petar
AU - Kosterov, Andrei
AU - Surovitskii, Leonid
N1 - Publisher Copyright: © 2022
PY - 2022/8/1
Y1 - 2022/8/1
N2 - Rock magnetism has a significant potential to elucidate archaeological issues related to firing process owing to the strong dependence of clay magnetic properties on firing conditions. The present study is an attempt to characterize some basic fuel installations (hearths, household ovens, pottery kilns, kilns for building ceramics and metallurgical ovens) by the most common magnetic parameters (magnetic remanence, initial magnetic susceptibility, Koenigsberger ratio, frequency-dependent magnetic susceptibility and viscosity coefficient), accumulating a set of relevant magnetic data for exemplary structures. Rasmussen method was used for firing temperature determinations. It is concluded that household ovens, used for cooking/heating activities only, were fired at temperatures below 500 °C. The acquired thermoremanence is in most cases partial TRM, generally less than 800 mA/m, the measured magnetic susceptibility does not exceed 300× 10−8m3/kg, and the corresponding Q ratios are mostly below 10. Experimentally baked clays show that already a firing at temperatures slightly above 500 °C yield much stronger and more stable TRM, and higher χ and Q ratio. Hearth and pottery kilns appear indistinguishable at this research stage, but systematically higher Q ratios were observed for the pottery kilns. Rising the temperature in the kilns for building ceramics and metallurgical ovens causes formation of a higher proportion of coarse-grained hematite and epsilon iron oxide, resulting in thermoremanence increase and magnetic susceptibility decrease. Firing temperatures determined for the household ovens corroborate well the observed magnetic parameters indicating a maximum operating temperature of not more than 460–470 °C. On the other hand, they appear to be underestimated when the highest firing intensity was expected (at T > 900 °C). This is indicative that further studies in this aspect are needed. The slags studied fail to produce any feasible result in terms of their firing temperatures, probably because of their strong inhomogeneity and/or complicated firing history. There is an excellent agreement between the estimated temperatures for clays baked in an experimental dual chamber kiln and the thermocouple readings. Differences in firing atmosphere between archaeological structures (or their experimental analogues) and laboratory furnaces probably have the least effect on low-temperature heated objects (i.e., household ovens) and the strongest on high-temperature ones where reducing conditions dominate that should be taken into account in the data interpretation. An overestimation of Tfiring can happen for low-temperature materials due to possible intense magnetic transformations above 600 °C.
AB - Rock magnetism has a significant potential to elucidate archaeological issues related to firing process owing to the strong dependence of clay magnetic properties on firing conditions. The present study is an attempt to characterize some basic fuel installations (hearths, household ovens, pottery kilns, kilns for building ceramics and metallurgical ovens) by the most common magnetic parameters (magnetic remanence, initial magnetic susceptibility, Koenigsberger ratio, frequency-dependent magnetic susceptibility and viscosity coefficient), accumulating a set of relevant magnetic data for exemplary structures. Rasmussen method was used for firing temperature determinations. It is concluded that household ovens, used for cooking/heating activities only, were fired at temperatures below 500 °C. The acquired thermoremanence is in most cases partial TRM, generally less than 800 mA/m, the measured magnetic susceptibility does not exceed 300× 10−8m3/kg, and the corresponding Q ratios are mostly below 10. Experimentally baked clays show that already a firing at temperatures slightly above 500 °C yield much stronger and more stable TRM, and higher χ and Q ratio. Hearth and pottery kilns appear indistinguishable at this research stage, but systematically higher Q ratios were observed for the pottery kilns. Rising the temperature in the kilns for building ceramics and metallurgical ovens causes formation of a higher proportion of coarse-grained hematite and epsilon iron oxide, resulting in thermoremanence increase and magnetic susceptibility decrease. Firing temperatures determined for the household ovens corroborate well the observed magnetic parameters indicating a maximum operating temperature of not more than 460–470 °C. On the other hand, they appear to be underestimated when the highest firing intensity was expected (at T > 900 °C). This is indicative that further studies in this aspect are needed. The slags studied fail to produce any feasible result in terms of their firing temperatures, probably because of their strong inhomogeneity and/or complicated firing history. There is an excellent agreement between the estimated temperatures for clays baked in an experimental dual chamber kiln and the thermocouple readings. Differences in firing atmosphere between archaeological structures (or their experimental analogues) and laboratory furnaces probably have the least effect on low-temperature heated objects (i.e., household ovens) and the strongest on high-temperature ones where reducing conditions dominate that should be taken into account in the data interpretation. An overestimation of Tfiring can happen for low-temperature materials due to possible intense magnetic transformations above 600 °C.
KW - Ancient combustion structures
KW - Baked clay
KW - Firing temperatures
KW - Magnetic properties
UR - http://www.scopus.com/inward/record.url?scp=85132852330&partnerID=8YFLogxK
U2 - 10.1016/j.jas.2022.105639
DO - 10.1016/j.jas.2022.105639
M3 - Article
AN - SCOPUS:85132852330
VL - 144
JO - Journal of Archaeological Science
JF - Journal of Archaeological Science
SN - 0305-4403
M1 - 105639
ER -
ID: 97089087