Designing strategies to reach monodispersity in fabrication of semiconductor nanowire ensembles is essential for numerous applications. When Ga-catalyzed GaAs nanowire arrays are grown by molecular beam epitaxy with help of droplet-engineering, we observe a significant narrowing of the diameter distribution of the final nanowire array with respect to the size distribution of the initial Ga droplets. Considering that the droplet serves as a nonequilibrium reservoir of a group III metal, we develop a model that demonstrates a self-equilibration effect on the droplet size in self-catalyzed III-V nanowires. This effect leads to arrays of nanowires with a high degree of uniformity regardless of the initial conditions, while the stationary diameter can be further finely tuned by varying the spacing of the array pitch on patterned Si substrates.