Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conduction band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The sta
Original languageEnglish
Article number 020011
Number of pages7
JournalAIP Conference Proceedings
Volume1748
Issue number1
DOIs
StatePublished - 2016

ID: 73844800