Research output: Contribution to journal › Article › peer-review
On the decay rate of (p, A)-lacunary series. / Nazarov, F. L.; Shirokov, N. A.
In: Journal of Mathematical Sciences , Vol. 139, No. 2, 11.2006, p. 6437-6446.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On the decay rate of (p, A)-lacunary series
AU - Nazarov, F. L.
AU - Shirokov, N. A.
N1 - Funding Information: Aknowledgments. This research was supported by the Russian Foundation for Basic Research (proect 05-01-0924).
PY - 2006/11
Y1 - 2006/11
N2 - A power series ∑k=0∞akx nk with radius of convergence equal 1 is called a (p,A)-lacunary one if nk ≥ Akp, A > 0, 1 < p < ∞. It is proved that if 1 < p < 2 and f(x) is a (p,A)-lacunary series that satisfies the condition |f(x)|exp ( B(1 - x)- 1/p - 1 + ε(1 - x) -1/p - 1/(|log (1 - x)| + 1)x→1-0→ 0, where B = (p - 1)(π/p)p/p - 1.1/A1/(p-1).1/|cos πp/2|1/(p-1), for some ε > 0, then f ≡0. We construct a (p,A)-lacunary series f 0 such that |f0 (x)|exp ( B(1 - x)-1/p-1 + C0(1 - x)-1/p-1/(|log(1 - x)|2 + 1)) x→1-0 → 0 with a constant C0 = C 0(p,A) > 0. Bibliography: 4 titles.
AB - A power series ∑k=0∞akx nk with radius of convergence equal 1 is called a (p,A)-lacunary one if nk ≥ Akp, A > 0, 1 < p < ∞. It is proved that if 1 < p < 2 and f(x) is a (p,A)-lacunary series that satisfies the condition |f(x)|exp ( B(1 - x)- 1/p - 1 + ε(1 - x) -1/p - 1/(|log (1 - x)| + 1)x→1-0→ 0, where B = (p - 1)(π/p)p/p - 1.1/A1/(p-1).1/|cos πp/2|1/(p-1), for some ε > 0, then f ≡0. We construct a (p,A)-lacunary series f 0 such that |f0 (x)|exp ( B(1 - x)-1/p-1 + C0(1 - x)-1/p-1/(|log(1 - x)|2 + 1)) x→1-0 → 0 with a constant C0 = C 0(p,A) > 0. Bibliography: 4 titles.
UR - http://www.scopus.com/inward/record.url?scp=33750162142&partnerID=8YFLogxK
U2 - 10.1007/s10958-006-0361-x
DO - 10.1007/s10958-006-0361-x
M3 - Article
AN - SCOPUS:33750162142
VL - 139
SP - 6437
EP - 6446
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 2
ER -
ID: 86660285