Research output: Contribution to journal › Article › peer-review
A power series ∑k=0∞akx nk with radius of convergence equal 1 is called a (p,A)-lacunary one if nk ≥ Akp, A > 0, 1 < p < ∞. It is proved that if 1 < p < 2 and f(x) is a (p,A)-lacunary series that satisfies the condition |f(x)|exp ( B(1 - x)- 1/p - 1 + ε(1 - x) -1/p - 1/(|log (1 - x)| + 1)x→1-0→ 0, where B = (p - 1)(π/p)p/p - 1.1/A1/(p-1).1/|cos πp/2|1/(p-1), for some ε > 0, then f ≡0. We construct a (p,A)-lacunary series f 0 such that |f0 (x)|exp ( B(1 - x)-1/p-1 + C0(1 - x)-1/p-1/(|log(1 - x)|2 + 1)) x→1-0 → 0 with a constant C0 = C 0(p,A) > 0. Bibliography: 4 titles.
Original language | English |
---|---|
Pages (from-to) | 6437-6446 |
Number of pages | 10 |
Journal | Journal of Mathematical Sciences |
Volume | 139 |
Issue number | 2 |
DOIs | |
State | Published - Nov 2006 |
ID: 86660285