Standard

On the constant in Jackson's inequality for the space LP (-∞, +∞). / Vinogradov, O. L.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 3, 07.1994, p. 15-22.

Research output: Contribution to journalArticlepeer-review

Harvard

Vinogradov, OL 1994, 'On the constant in Jackson's inequality for the space LP (-∞, +∞)', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 3, pp. 15-22.

APA

Vinogradov, O. L. (1994). On the constant in Jackson's inequality for the space LP (-∞, +∞). Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (3), 15-22.

Vancouver

Vinogradov OL. On the constant in Jackson's inequality for the space LP (-∞, +∞). Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1994 Jul;(3):15-22.

Author

Vinogradov, O. L. / On the constant in Jackson's inequality for the space LP (-∞, +∞). In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1994 ; No. 3. pp. 15-22.

BibTeX

@article{1aa3fe8a264841ac8b71467915f18f2a,
title = "On the constant in Jackson's inequality for the space LP (-∞, +∞)",
abstract = "The exact constant in the first Jackson's inequality for approximation by integer finite power functions in the space LP (-∞, +∞), when 1≤P<2, is proved not to exceed 2-1/p(1). Three special theorems are proved.",
author = "Vinogradov, {O. L.}",
year = "1994",
month = jul,
language = "English",
pages = "15--22",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - On the constant in Jackson's inequality for the space LP (-∞, +∞)

AU - Vinogradov, O. L.

PY - 1994/7

Y1 - 1994/7

N2 - The exact constant in the first Jackson's inequality for approximation by integer finite power functions in the space LP (-∞, +∞), when 1≤P<2, is proved not to exceed 2-1/p(1). Three special theorems are proved.

AB - The exact constant in the first Jackson's inequality for approximation by integer finite power functions in the space LP (-∞, +∞), when 1≤P<2, is proved not to exceed 2-1/p(1). Three special theorems are proved.

UR - http://www.scopus.com/inward/record.url?scp=0028475240&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0028475240

SP - 15

EP - 22

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 3

ER -

ID: 101357658