The exact constant in the first Jackson's inequality for approximation by integer finite power functions in the space LP (-∞, +∞), when 1≤P<2, is proved not to exceed 2-1/p(1). Three special theorems are proved.

Original languageEnglish
Pages (from-to)15-22
Number of pages8
JournalVestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya
Issue number3
StatePublished - Jul 1994

    Scopus subject areas

  • Mathematics(all)
  • Physics and Astronomy(all)

ID: 101357658