Documents

DOI

Assume that n independent uniformly distributed random points are set on the unit circle. Construct the convex random polygon with vertices in these points. What are the average area and the average perimeter of this polygon? Brown computed the average area several years ago. We compute the average perimeter and obtain quite similar expressions. We also discuss the rate of the convergence of this value to the limit and evaluate the average value of the sum of squares for the sides of the inscribed triangle.
Translated title of the contributionВычисляется среднее значение периметра случайного вписанного многоугольника, вершины которого равномерно распределены на единичной окружности
Original languageEnglish
Pages (from-to)58-63
Number of pages6
JournalVestnik St. Petersburg University: Mathematics
Volume53
Issue number1
DOIs
StatePublished - 26 Mar 2020

    Scopus subject areas

  • Mathematics(all)

    Research areas

  • random polygons, perimeter, convexity, uniform distribution, random polygon

ID: 52028477