Research output: Contribution to journal › Article › peer-review
The formation of space charge in weak electrolytes, specifically in liquid dielectrics, has been considered. An analytical solution is given to a simplified set of Nernst-Planck equations that describe the formation of nonequilibrium recombination layers in weak electrolytes. This approximate analytical solution is compared with computer simulation data for a complete set of Poisson-Nernst-Planck equations. It has been shown that the current passage in weak electrolytes can be described by a single dimensionless parameter that equals the length of a near-electrode recombination layer divided by the width of the interelectrode gap. The formation mechanism and the structure of charged nonequilibrium near-electrode layers in the nonstationary regime have been analyzed for different injection-to-conduction current ratios. It has been found that almost all charge structures encountered in weak dielectrics can be accounted for by the nonequilibrium dissociation-recombination mechanism of space charge formation.
Original language | English |
---|---|
Pages (from-to) | 957-964 |
Number of pages | 8 |
Journal | Technical Physics |
Volume | 61 |
Issue number | 7 |
DOIs | |
State | Published - 2016 |
ID: 7577304