Research output: Contribution to journal › Article › peer-review
We report for the first time on the hydride vapor phase epitaxy (HVPE) growth of long (26 μm) InAs nanowires on Si(111) substrate grown at a standard rate of 50 μm h-1. The nanowires grow vertically along the (111)B direction and exhibit a well faceted hexagonal shape with a constant diameter. The effect of the experimental parameters, growth temperature and III/V ratio, is investigated. The thermodynamic and kinetic mechanisms involved during the growth of such long nanowires are identified. It is demonstrated that growth occurs through direct condensation of InCl and As4/As2 gaseous species. Dechlorination of adsorbed InCl molecules is the limiting step at low temperature. Structural analysis through high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field (HAADF) imaging was performed. The high As4 partial pressure of the HVPE environment induces the presence of both wurtzite and zinc-blende phases. The results emphasize the potential of the low cost HVPE technique for the monolithic integration of arrays of long InAs nanowires on silicon. This journal is
Original language | English |
---|---|
Pages (from-to) | 378-384 |
Number of pages | 7 |
Journal | CrystEngComm |
Volume | 23 |
Issue number | 2 |
DOIs | |
State | Published - 14 Jan 2021 |
ID: 88771647