Standard

Linear transformations of forces. Nonholonomic systems. / Zegzhda, S. A.; Yushkov, M. P.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 4, 2000, p. 70-74.

Research output: Contribution to journalArticlepeer-review

Harvard

Zegzhda, SA & Yushkov, MP 2000, 'Linear transformations of forces. Nonholonomic systems', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 4, pp. 70-74.

APA

Zegzhda, S. A., & Yushkov, M. P. (2000). Linear transformations of forces. Nonholonomic systems. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (4), 70-74.

Vancouver

Zegzhda SA, Yushkov MP. Linear transformations of forces. Nonholonomic systems. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2000;(4):70-74.

Author

Zegzhda, S. A. ; Yushkov, M. P. / Linear transformations of forces. Nonholonomic systems. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2000 ; No. 4. pp. 70-74.

BibTeX

@article{342d5bb0bffb4a878d9596f4aa224cac,
title = "Linear transformations of forces. Nonholonomic systems",
abstract = "Linear transformations of forces introduced in the previous article are used. In the case of nonholonomic systems the Lagrange equations of the first and the second type are constructed. The basic forms for equations of motion in the case of nonholonomic systems are obtained.",
author = "Zegzhda, {S. A.} and Yushkov, {M. P.}",
note = "Copyright: Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.",
year = "2000",
language = "English",
pages = "70--74",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "4",

}

RIS

TY - JOUR

T1 - Linear transformations of forces. Nonholonomic systems

AU - Zegzhda, S. A.

AU - Yushkov, M. P.

N1 - Copyright: Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.

PY - 2000

Y1 - 2000

N2 - Linear transformations of forces introduced in the previous article are used. In the case of nonholonomic systems the Lagrange equations of the first and the second type are constructed. The basic forms for equations of motion in the case of nonholonomic systems are obtained.

AB - Linear transformations of forces introduced in the previous article are used. In the case of nonholonomic systems the Lagrange equations of the first and the second type are constructed. The basic forms for equations of motion in the case of nonholonomic systems are obtained.

UR - http://www.scopus.com/inward/record.url?scp=0034588222&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0034588222

SP - 70

EP - 74

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 4

ER -

ID: 71886731