Research output: Contribution to journal › Article › peer-review
Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane. / Tsiganov, Andrey V.
In: Regular and Chaotic Dynamics, Vol. 24, No. 2, 01.03.2019, p. 171-186.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane
AU - Tsiganov, Andrey V.
N1 - Tsiganov, A.V. Regul. Chaot. Dyn. (2019) 24: 171. https://doi.org/10.1134/S1560354719020035
PY - 2019/3/1
Y1 - 2019/3/1
N2 - We discuss a non-Hamiltonian vector field appearing in considering the partial motion of a Chaplygin ball rolling on a horizontal plane which rotates with constant angular velocity. In two partial cases this vector field is expressed via Hamiltonian vector fields using a nonalgebraic deformation of the canonical Poisson bivector on e * (3). For the symmetric ball we also calculate variables of separation, compatible Poisson brackets, the algebra of Haantjes operators and 2 × 2 Lax matrices.
AB - We discuss a non-Hamiltonian vector field appearing in considering the partial motion of a Chaplygin ball rolling on a horizontal plane which rotates with constant angular velocity. In two partial cases this vector field is expressed via Hamiltonian vector fields using a nonalgebraic deformation of the canonical Poisson bivector on e * (3). For the symmetric ball we also calculate variables of separation, compatible Poisson brackets, the algebra of Haantjes operators and 2 × 2 Lax matrices.
KW - 37J35
KW - 37J60
KW - 53D17
KW - 70E18
KW - Chaplygin ball
KW - nonholonomic mechanics
KW - separation of variables
KW - DYNAMICS
UR - http://www.scopus.com/inward/record.url?scp=85064257548&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/hamiltonization-separation-variables-chaplygin-ball-rotating-plane
U2 - 10.1134/S1560354719020035
DO - 10.1134/S1560354719020035
M3 - Article
AN - SCOPUS:85064257548
VL - 24
SP - 171
EP - 186
JO - Regular and Chaotic Dynamics
JF - Regular and Chaotic Dynamics
SN - 1560-3547
IS - 2
ER -
ID: 41161951