Research output: Contribution to journal › Article › peer-review
Membrane fouling is a serious issue in membrane technology which cannot be completely avoided but can be diminished. The perspective technique of membrane modification is the introduction of hydrophilic polymers or polyelectrolytes into the coagulation bath during membrane preparation via non-solvent-induced phase separation. The influence of polyacrylic acid (PAA) molecular weight (100,000, 250,000 and 450,000 g·mol -1) added to the aqueous coagulation bath (0.4-2.0 wt.%) on the polysulfone membrane structure, surface roughness, water contact angle and zeta potential of the selective layer, as well as the separation and antifouling performance, was systematically studied. It was found that membranes obtained via the addition of PAA with higher molecular weight feature smaller pore size and porosity, extremely high hydrophilicity and higher values of negative charge of membrane surface. It was shown that the increase in PAA concentration from 0.4 wt.% to 2.0 wt.% for all studied PAA molecular weights yielded a substantial decrease in water contact angle compared with the reference membrane (65 ± 2°) (from 27 ± 2° to 17 ± 2° for PAA with M n = 100,000 g·mol -1; from 25 ± 2° to 16 ± 2° for PAA with M n = 250,000 g·mol -1; and from 19 ± 2° to 10 ± 2° for PAA with M n = 450,000 g·mol -1). An increase in PAA molecular weight from 100,000 to 450,000 g·mol -1 led to a decrease in membrane permeability, an increase in rejection and tailoring excellent antifouling performance in the ultrafiltration of humic acid solutions. The fouling recovery ratio increased from 73% for the reference membrane up to 91%, 100% and 136% for membranes modified with the addition to the coagulation bath of 1.5 wt.% of PAA with molecular weights of 100,000 g·mol -1, 250,000 g·mol -1 and 450,000 g·mol -1, respectively. Overall, the addition of PAA of different molecular weights to the coagulation bath is an efficient tool to adjust membrane separation and antifouling properties for different separation tasks.
Original language | English |
---|---|
Article number | 1664 |
Number of pages | 21 |
Journal | Polymers |
Volume | 15 |
Issue number | 7 |
DOIs | |
State | Published - 27 Mar 2023 |
ID: 104021768