Standard

Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. / Zakharov, A. O.; Kovalenko, Yu.V.

In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Vol. 14, No. 4, 2018, p. 378-392.

Research output: Contribution to journalArticlepeer-review

Harvard

Zakharov, AO & Kovalenko, YV 2018, 'Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, vol. 14, no. 4, pp. 378-392. https://doi.org/10.21638/11702/spbu10.2018.410

APA

Zakharov, A. O., & Kovalenko, Y. V. (2018). Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 14(4), 378-392. https://doi.org/10.21638/11702/spbu10.2018.410

Vancouver

Zakharov AO, Kovalenko YV. Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2018;14(4):378-392. https://doi.org/10.21638/11702/spbu10.2018.410

Author

Zakharov, A. O. ; Kovalenko, Yu.V. / Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2018 ; Vol. 14, No. 4. pp. 378-392.

BibTeX

@article{e1c71b22b5394db1b6f0cd06e52c0cf6,
title = "Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria",
abstract = "We consider the bicriteria asymmetric traveling salesman problem (bi-ATSP). The optimal solution to a multicriteria problem is usually supposed to be the Pareto set, which is rather wide in real-world problems. For the first time, we apply to the bi-ATSP the axiomatic approach of the Pareto set reduction proposed by V. Noghin. We identify series of {"}quanta of information{"} that guarantee the reduction of the Pareto set for particular cases of the bi-ATSP. An approximation of the Pareto set to the bi-ATSP is constructed by a new multi-objective genetic algorithm. The experimental evaluation carried out in this paper shows the degree of reduction of the Pareto set approximation for various {"}quanta of information{"} and various structures of the bi-ATSP instances generated randomly or from TSPLIB problems.",
keywords = "reduction of the Pareto set, decision maker preferences, multiobjective genetic algorithm, computational experiment, ALGORITHM, INFORMATION, сужение множества Парето, предпочтения ЛПР, многокритериальный генетический алгоритм, вычислительный эксперимент",
author = "Zakharov, {A. O.} and Yu.V. Kovalenko",
note = "Zakharov A. O., Kovalenko Yu. V. Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018, vol. 14, iss. 4, pp. 378–392. https://doi.org/10.21638/11702/spbu10.2018.410",
year = "2018",
doi = "10.21638/11702/spbu10.2018.410",
language = "English",
volume = "14",
pages = "378--392",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "4",

}

RIS

TY - JOUR

T1 - Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria

AU - Zakharov, A. O.

AU - Kovalenko, Yu.V.

N1 - Zakharov A. O., Kovalenko Yu. V. Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018, vol. 14, iss. 4, pp. 378–392. https://doi.org/10.21638/11702/spbu10.2018.410

PY - 2018

Y1 - 2018

N2 - We consider the bicriteria asymmetric traveling salesman problem (bi-ATSP). The optimal solution to a multicriteria problem is usually supposed to be the Pareto set, which is rather wide in real-world problems. For the first time, we apply to the bi-ATSP the axiomatic approach of the Pareto set reduction proposed by V. Noghin. We identify series of "quanta of information" that guarantee the reduction of the Pareto set for particular cases of the bi-ATSP. An approximation of the Pareto set to the bi-ATSP is constructed by a new multi-objective genetic algorithm. The experimental evaluation carried out in this paper shows the degree of reduction of the Pareto set approximation for various "quanta of information" and various structures of the bi-ATSP instances generated randomly or from TSPLIB problems.

AB - We consider the bicriteria asymmetric traveling salesman problem (bi-ATSP). The optimal solution to a multicriteria problem is usually supposed to be the Pareto set, which is rather wide in real-world problems. For the first time, we apply to the bi-ATSP the axiomatic approach of the Pareto set reduction proposed by V. Noghin. We identify series of "quanta of information" that guarantee the reduction of the Pareto set for particular cases of the bi-ATSP. An approximation of the Pareto set to the bi-ATSP is constructed by a new multi-objective genetic algorithm. The experimental evaluation carried out in this paper shows the degree of reduction of the Pareto set approximation for various "quanta of information" and various structures of the bi-ATSP instances generated randomly or from TSPLIB problems.

KW - reduction of the Pareto set

KW - decision maker preferences

KW - multiobjective genetic algorithm

KW - computational experiment

KW - ALGORITHM

KW - INFORMATION

KW - сужение множества Парето

KW - предпочтения ЛПР

KW - многокритериальный генетический алгоритм

KW - вычислительный эксперимент

UR - http://vestnik.spbu.ru/html18/s10/s10v4/10.pdf

U2 - 10.21638/11702/spbu10.2018.410

DO - 10.21638/11702/spbu10.2018.410

M3 - Article

VL - 14

SP - 378

EP - 392

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 4

ER -

ID: 38400053