We consider the bicriteria asymmetric traveling salesman problem (bi-ATSP). The optimal solution to a multicriteria problem is usually supposed to be the Pareto set, which is rather wide in real-world problems. For the first time, we apply to the bi-ATSP the axiomatic approach of the Pareto set reduction proposed by V. Noghin. We identify series of "quanta of information" that guarantee the reduction of the Pareto set for particular cases of the bi-ATSP. An approximation of the Pareto set to the bi-ATSP is constructed by a new multi-objective genetic algorithm. The experimental evaluation carried out in this paper shows the degree of reduction of the Pareto set approximation for various "quanta of information" and various structures of the bi-ATSP instances generated randomly or from TSPLIB problems.

Translated title of the contributionПостроение и сужение множества Парето в асимметричной задаче коммивояжера с двумя критериями
Original languageEnglish
Pages (from-to)378-392
Number of pages15
Journal ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
Volume14
Issue number4
DOIs
StatePublished - 2018

    Research areas

  • reduction of the Pareto set, decision maker preferences, multiobjective genetic algorithm, computational experiment, ALGORITHM, INFORMATION

ID: 38400053