Research output: Contribution to journal › Article › peer-review
Calculation of the moscovium ground-state energy by quantum algorithms. / Зайцев, Владимир Алексеевич; Грошев, Максим Эдуардович; Мальцев, Илья Александрович; Дурова, Анастасия Вячеславовна; Шабаев, Владимир Моисеевич.
In: International Journal of Quantum Chemistry, 08.09.2023.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Calculation of the moscovium ground-state energy by quantum algorithms
AU - Зайцев, Владимир Алексеевич
AU - Грошев, Максим Эдуардович
AU - Мальцев, Илья Александрович
AU - Дурова, Анастасия Вячеславовна
AU - Шабаев, Владимир Моисеевич
N1 - FUNDING INFORMATION The work is supported by the Ministry of Science and Higher Education of the Russian Federation within the Grant No. 075-10-2020-117.
PY - 2023/9/8
Y1 - 2023/9/8
N2 - We investigate the possibility to calculate the ground-state energy of the atomic systems on a quantum computer. For this purpose we evaluate the lowest binding energy of the moscovium atom with the use of the iterative phase estimation and variational quantum eigensolver. The calculations by the variational quantum eigensolver are performed with a disentangled unitary coupled cluster ansatz and with various types of hardware-efficient ansatze. The optimization is performed with the use of the Adam and Quantum Natural Gradients procedures. The scalability of the ansatze and optimizers is tested by increasing the size of the basis set and the number of active electrons. The number of gates required for the iterative phase estimation and variational quantum eigensolver is also estimated.
AB - We investigate the possibility to calculate the ground-state energy of the atomic systems on a quantum computer. For this purpose we evaluate the lowest binding energy of the moscovium atom with the use of the iterative phase estimation and variational quantum eigensolver. The calculations by the variational quantum eigensolver are performed with a disentangled unitary coupled cluster ansatz and with various types of hardware-efficient ansatze. The optimization is performed with the use of the Adam and Quantum Natural Gradients procedures. The scalability of the ansatze and optimizers is tested by increasing the size of the basis set and the number of active electrons. The number of gates required for the iterative phase estimation and variational quantum eigensolver is also estimated.
KW - quantum algorithms
KW - superheavy elements
UR - http://arxiv.org/abs/2207.08255
UR - https://www.mendeley.com/catalogue/6bc7c15b-e67f-3151-b6f8-2e2aa85d923f/
U2 - 10.1002/qua.27232
DO - 10.1002/qua.27232
M3 - Article
JO - International Journal of Quantum Chemistry
JF - International Journal of Quantum Chemistry
SN - 0020-7608
M1 - e27232
ER -
ID: 110670286