Standard

ALL-SET-HOMOGENEOUS SPACES. / Lebedeva, N.; Petrunin, A.

In: St. Petersburg Mathematical Journal, Vol. 35, No. 3, 30.07.2024, p. 473-476.

Research output: Contribution to journalArticlepeer-review

Harvard

Lebedeva, N & Petrunin, A 2024, 'ALL-SET-HOMOGENEOUS SPACES', St. Petersburg Mathematical Journal, vol. 35, no. 3, pp. 473-476. https://doi.org/10.1090/spmj/1814

APA

Lebedeva, N., & Petrunin, A. (2024). ALL-SET-HOMOGENEOUS SPACES. St. Petersburg Mathematical Journal, 35(3), 473-476. https://doi.org/10.1090/spmj/1814

Vancouver

Lebedeva N, Petrunin A. ALL-SET-HOMOGENEOUS SPACES. St. Petersburg Mathematical Journal. 2024 Jul 30;35(3):473-476. https://doi.org/10.1090/spmj/1814

Author

Lebedeva, N. ; Petrunin, A. / ALL-SET-HOMOGENEOUS SPACES. In: St. Petersburg Mathematical Journal. 2024 ; Vol. 35, No. 3. pp. 473-476.

BibTeX

@article{d86ab27745a34be3952f08e73227a390,
title = "ALL-SET-HOMOGENEOUS SPACES",
abstract = "A metric space is said to be all-set-homogeneous if any isometry between its subsets can be extended to an isometry of the whole space. A classification of a certain subclass of all-set-homogeneous length spaces is given. {\textcopyright} (2024), (American Mathematical Society). All rights reserved.",
keywords = "group of isometries, metric foundations of geometry, Metrically homogeneous spaces, universal trees, Uryson space",
author = "N. Lebedeva and A. Petrunin",
note = "Export Date: 4 November 2024 Сведения о финансировании: Russian Foundation for Basic Research, RFBR, 20-01-00070 Сведения о финансировании: Russian Foundation for Basic Research, RFBR Сведения о финансировании: National Science Foundation, NSF, DMS-2005279 Сведения о финансировании: National Science Foundation, NSF Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 075-15-2022-289 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Текст о финансировании 1: 2020 Mathematics Subject Classification. Primary 51K05. Key words and phrases. Metrically homogeneous spaces, metric foundations of geometry, universal trees, Uryson space, group of isometries. The first author was partially supported by the Russian Foundation for Basic Research grant 20-01-00070; the second author was partially supported by the National Science Foundation grant DMS-2005279 and the Ministry of Education and Science of the Russian Federation, grant 075-15-2022-289.",
year = "2024",
month = jul,
day = "30",
doi = "10.1090/spmj/1814",
language = "Английский",
volume = "35",
pages = "473--476",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "3",

}

RIS

TY - JOUR

T1 - ALL-SET-HOMOGENEOUS SPACES

AU - Lebedeva, N.

AU - Petrunin, A.

N1 - Export Date: 4 November 2024 Сведения о финансировании: Russian Foundation for Basic Research, RFBR, 20-01-00070 Сведения о финансировании: Russian Foundation for Basic Research, RFBR Сведения о финансировании: National Science Foundation, NSF, DMS-2005279 Сведения о финансировании: National Science Foundation, NSF Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 075-15-2022-289 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Текст о финансировании 1: 2020 Mathematics Subject Classification. Primary 51K05. Key words and phrases. Metrically homogeneous spaces, metric foundations of geometry, universal trees, Uryson space, group of isometries. The first author was partially supported by the Russian Foundation for Basic Research grant 20-01-00070; the second author was partially supported by the National Science Foundation grant DMS-2005279 and the Ministry of Education and Science of the Russian Federation, grant 075-15-2022-289.

PY - 2024/7/30

Y1 - 2024/7/30

N2 - A metric space is said to be all-set-homogeneous if any isometry between its subsets can be extended to an isometry of the whole space. A classification of a certain subclass of all-set-homogeneous length spaces is given. © (2024), (American Mathematical Society). All rights reserved.

AB - A metric space is said to be all-set-homogeneous if any isometry between its subsets can be extended to an isometry of the whole space. A classification of a certain subclass of all-set-homogeneous length spaces is given. © (2024), (American Mathematical Society). All rights reserved.

KW - group of isometries

KW - metric foundations of geometry

KW - Metrically homogeneous spaces

KW - universal trees

KW - Uryson space

UR - https://www.mendeley.com/catalogue/4e7a30a2-0070-3692-bd08-3a4861dbbc7a/

U2 - 10.1090/spmj/1814

DO - 10.1090/spmj/1814

M3 - статья

VL - 35

SP - 473

EP - 476

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 3

ER -

ID: 126740585