Research output: Contribution to journal › Article › peer-review
ALL-SET-HOMOGENEOUS SPACES. / Lebedeva, N.; Petrunin, A.
In: St. Petersburg Mathematical Journal, Vol. 35, No. 3, 30.07.2024, p. 473-476.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - ALL-SET-HOMOGENEOUS SPACES
AU - Lebedeva, N.
AU - Petrunin, A.
N1 - Export Date: 4 November 2024 Сведения о финансировании: Russian Foundation for Basic Research, RFBR, 20-01-00070 Сведения о финансировании: Russian Foundation for Basic Research, RFBR Сведения о финансировании: National Science Foundation, NSF, DMS-2005279 Сведения о финансировании: National Science Foundation, NSF Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 075-15-2022-289 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Текст о финансировании 1: 2020 Mathematics Subject Classification. Primary 51K05. Key words and phrases. Metrically homogeneous spaces, metric foundations of geometry, universal trees, Uryson space, group of isometries. The first author was partially supported by the Russian Foundation for Basic Research grant 20-01-00070; the second author was partially supported by the National Science Foundation grant DMS-2005279 and the Ministry of Education and Science of the Russian Federation, grant 075-15-2022-289.
PY - 2024/7/30
Y1 - 2024/7/30
N2 - A metric space is said to be all-set-homogeneous if any isometry between its subsets can be extended to an isometry of the whole space. A classification of a certain subclass of all-set-homogeneous length spaces is given. © (2024), (American Mathematical Society). All rights reserved.
AB - A metric space is said to be all-set-homogeneous if any isometry between its subsets can be extended to an isometry of the whole space. A classification of a certain subclass of all-set-homogeneous length spaces is given. © (2024), (American Mathematical Society). All rights reserved.
KW - group of isometries
KW - metric foundations of geometry
KW - Metrically homogeneous spaces
KW - universal trees
KW - Uryson space
UR - https://www.mendeley.com/catalogue/4e7a30a2-0070-3692-bd08-3a4861dbbc7a/
U2 - 10.1090/spmj/1814
DO - 10.1090/spmj/1814
M3 - статья
VL - 35
SP - 473
EP - 476
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 3
ER -
ID: 126740585