A metric space is said to be all-set-homogeneous if any isometry between its subsets can be extended to an isometry of the whole space. A classification of a certain subclass of all-set-homogeneous length spaces is given. © (2024), (American Mathematical Society). All rights reserved.
Original languageEnglish
Pages (from-to)473-476
Number of pages4
JournalSt. Petersburg Mathematical Journal
Volume35
Issue number3
DOIs
StatePublished - 30 Jul 2024

    Research areas

  • group of isometries, metric foundations of geometry, Metrically homogeneous spaces, universal trees, Uryson space

ID: 126740585