Standard

Harvard

APA

Vancouver

Author

BibTeX

@article{5bd2f448e3b94bc8a97c9816a4fd614c,
title = "Access to Spiro Bis-β-lactams via a Metal-Free Microwave-Assisted Wolff Rearrangement/Staudinger [2+2] Cycloaddition Cascade Involving 3-Diazotetramic Acids and Imines",
abstract = "Herein, we report the study of the thermally promoted reaction of 3-diazotetramic acids with imines as a rapid route to a novel spiro heterocyclic scaffold, spiro bis-β-lactams (2,6-diazaspiro[3.3]heptane-1,5-diones). The transformation proceeds via metal-free microwave-assisted Wolff rearrangement of the diazo reagent followed by Staudinger [2+2] cycloaddition of the heterocyclic ketenes with Shiff bases. This methodology enables the preparation of diastereomerically pure spiro bis-β-lactams in high yields and provides an avenue for exploring new versions of the privileged β-lactam core for drug design. {\textcopyright} 2024 American Chemical Society",
keywords = "Amides, Diazo reagents, Drug Design, Higher yield, Metal free, Microwave-assisted, Shiff basis, Wolff rearrangement, [2 + 2] cycloaddition, Scaffolds",
author = "V. Krivovicheva and I. Lyutin and G. Kantin and D. Dar{\textquoteright}in",
note = "Export Date: 11 March 2024 CODEN: JOCEA Адрес для корреспонденции: Dar{\textquoteright}in, D.; Saint Petersburg State UniversityRussian Federation; эл. почта: d.dariin@spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 20-13-00024 Текст о финансировании 1: The authors are grateful to the Russian Science Foundation for financial support (Project Grant 20-13-00024). The authors thank the Research Centre for Magnetic Resonance, the Center for Chemical Analysis and Materials Research, and the Centre for X-ray Diffraction Methods of Saint Petersburg State University Research Park for obtaining the analytical data. Пристатейные ссылки: Hiesinger, K., Dar{\textquoteright}in, D., Proschak, E., Krasavin, M., Spirocyclic Scaffolds in Medicinal Chemistry (2021) J. Med. Chem., 64, pp. 150-183; Ritchie, T.J., Macdonald, S.J., The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design? (2009) Drug Discovery Today, 14, pp. 1011-1020; Zheng, Y., Tice, C.M., Singh, S.B., The use of spirocyclic scaffolds in drug discovery (2014) Bioorg. Med. Chem. Lett., 24, pp. 3673-3682; Zheng, Y.J., Tice, C.M., The utilization of spirocyclic scaffolds in novel drug discovery (2016) Expert Opin. Drug Discovery, 11, pp. 831-834; Lovering, F., Bikker, J., Humblet, C., Escape from flatland: increasing saturation as an approach to improving clinical success (2009) J. Med. Chem., 52, pp. 6752-6756; Tajabadi, F.M., Campitelli, M.R., Quinn, R.J., Scaffold Flatness: Reversing the Trend (2013) Springer Sci. Rev., 1, pp. 141-151; Fernandes, R., Amador, P., Prud{\^e}ncio, C., β-Lactams: chemical structure, mode of action and mechanisms of resistance (2013) Rev. Med. Microbiol., 24, pp. 7-17; Veinberg, G., Potorocina, I., Vorona, M., Recent Trends in the Design, Synthesis and Biological Exploration of β-Lactams (2013) Curr.Med. Chem., 21, pp. 393-416; Fisher, J.F., Mobashery, S., The β-Lactam (Azetidin-2-one) as a Privileged Ring in Medicinal Chemistry (2015) Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation, , ; . In; Br{\"a}se S. Ed.; Royal Society of Chemistry ; Lima, L.M., Silva, B., Barbosa, G., Barreiro, E.J., beta-lactam antibiotics: An overview from a medicinal chemistry perspective (2020) Eur. J. Med. Chem., 208, p. 112829; Fu, D.J., Zhang, Y.F., Chang, A.Q., Li, J., beta-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets (2020) Eur. J. Med. Chem., 201, p. 112510; Chen, L., Wang, K., Shao, Y., Sun, J., Stereoselective Synthesis of Fully Substituted beta-Lactams via Metal-Organo Relay Catalysis (2019) Org. Lett., 21, pp. 3804-3807; Huang, Z., Wang, C., Tokunaga, E., Sumii, Y., Shibata, N., Stereoselective Synthesis of beta-Lactam-triflones under Catalyst-Free Conditions (2015) Org. Lett., 17, pp. 5610-5613; Synofzik, J., Dar{\textquoteright}in, D., Novikov, M.S., Kantin, G., Bakulina, O., Krasavin, M., alpha-Acyl-alpha-diazoacetates in Transition-Metal-Free beta-Lactam Synthesis (2019) J. Org. Chem., 84, pp. 12101-12110; Krasavin, M., Synofzik, J., Bakulina, O., Dar{\textquoteright}in, D., Kantin, G., Dialkyl Diazomalonates in Transition-Metal-Free, Thermally Promoted, Diastereoselective Wolff β-Lactam Synthesis (2020) Synlett, 31, pp. 1273-1276; Golubev, A.A., Smetanin, I.A., Agafonova, A.V., Rostovskii, N.V., Khlebnikov, A.F., Starova, G.L., Novikov, M.S., [2 + 1 + 1] Assembly of spiro beta-lactams by Rh(II)-catalyzed reaction of diazocarbonyl compounds with azirines/isoxazoles (2019) Org. Biomol. Chem., 17, pp. 6821-6830; Xu, J., Chen, L., Reactions of unsymmetrical α-diazo-β-diketones with imines: Syntheses of 4H-1,3-oxazin-4-ones (2002) Heteroatom Chemistry, 13, pp. 165-168; Tang, J., Yan, Z.-H., Zhan, G., Yang, Q.-Q., Cheng, Y.-Y., Li, X., Huang, W., Visible-light-mediated sequential Wolff rearrangement and Staudinger cycloaddition enabling the assembly of spiro-pyrazolone-β-lactams (2022) Org. Chem. Front., 9, pp. 4341-4346; Guranova, N.I., Dar{\textquoteright}in, D., Kantin, G., Novikov, A.S., Bakulina, O., Krasavin, M., Rh(II)-Catalyzed Spirocyclization of alpha-Diazo Homophthalimides with Cyclic Ethers (2019) J. Org. Chem., 84, pp. 4534-4542; Eremeyeva, M., Zhukovsky, D., Dar{\textquoteright}in, D., Krasavin, M., The Use of α-Diazo-γ-butyrolactams in the B{\"u}chner-Curtius-Schlotterbeck Reaction of Cyclic Ketones Opens New Entry to Spirocyclic Pyrrolidones (2020) Synlett, 31, pp. 982-986; Dar{\textquoteright}in, D., Kantin, G., Bakulina, O., Inyutina, A., Chupakhin, E., Krasavin, M., Spirocyclizations Involving Oxonium Ylides Derived from Cyclic alpha-Diazocarbonyl Compounds: An Entry into 6-Oxa-2-azaspiro[4.5]decane Scaffold (2020) J. Org. Chem., 85, pp. 15586-15599; Dar{\textquoteright}in, D., Kantin, G., Chupakhin, E., Sharoyko, V., Krasavin, M., Natural-Like Spirocyclic Δα,β-Butenolides Obtained from Diazo Homophthalimides (2021) Chem. - Eur. J., 27, pp. 8221-8227; Lowe, G., Ridley, D.D., Synthesis of β-lactams by photolytic Wolff rearrangement (1973) J. Chem. Soc., Perkin Trans. 1, pp. 2024-2029; Lowe, G., Yeung, H.W., Synthesis of a β-lactam related to the cephalosporins (1973) J. Chem. Soc., Perkin Trans. 1, pp. 2907-2910; Stork, G., Szajewski, R.P., Carboxy beta-lactams by photochemical ring contraction (1974) J. Am. Chem. Soc., 96, pp. 5787-5791; Presset, M., Coquerel, Y., Rodriguez, J., Microwave-assisted Wolff rearrangement of cyclic 2-diazo-1,3-diketones: an eco-compatible route to alpha-carbonylated cycloalkanones (2009) J. Org. Chem., 74, pp. 415-418; Lei, Y., Xu, J., Efficient synthesis of ethyl 2-(oxazolin-2-yl)alkanoates via ethoxycarbonylketene-induced electrophilic ring expansion of aziridines (2022) Beilstein J. Org. Chem., 18, pp. 70-76; Dar{\textquoteright}in, D., Kantin, G., Glushakova, D., Sharoyko, V., Krasavin, M., Diazo Tetramic Acids Provide Access to Natural-Like Spirocyclic Δα,β-Butenolides through Rh(II)-Catalyzed O-H Insertion/Base-Promoted Cyclization (2023) J. Org. Chem.; Krivovicheva, V., Kantin, G., Dar{\textquoteright}in, D., Krasavin, M., Rh(II)-catalyzed condensation of 3-diazotetramic acids with nitriles delivers novel druglike 5,6-dihydro-4H-pyrrolo[3,4-d]oxazol-4-ones (2023) Tetrahedron Lett., 120, p. 154457; Jiao, L., Liang, Y., Xu, J., Origin of the Relative Stereoselectivity of the β-Lactam Formation in the Staudinger Reaction (2006) J. Am. Chem. Soc., 128, pp. 6060-6069; Jiao, L., Zhang, Q., Liang, Y., Zhang, S., Xu, J., A Versatile Method for the Synthesis of 3-Alkoxycarbonyl β-Lactam Derivatives (2006) J. Org. Chem., 71, pp. 815-818; Qi, H., Li, X., Xu, J., A Stereoselective control in the Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents: experimental investigation and theoretical rationalization (2011) Org. Biomol. Chem., 9, pp. 2702-2714",
year = "2024",
month = feb,
day = "16",
doi = "10.1021/acs.joc.3c02494",
language = "Английский",
volume = "89",
pages = "3585--3589",
journal = "Journal of Organic Chemistry",
issn = "0022-3263",
publisher = "American Chemical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Access to Spiro Bis-β-lactams via a Metal-Free Microwave-Assisted Wolff Rearrangement/Staudinger [2+2] Cycloaddition Cascade Involving 3-Diazotetramic Acids and Imines

AU - Krivovicheva, V.

AU - Lyutin, I.

AU - Kantin, G.

AU - Dar’in, D.

N1 - Export Date: 11 March 2024 CODEN: JOCEA Адрес для корреспонденции: Dar’in, D.; Saint Petersburg State UniversityRussian Federation; эл. почта: d.dariin@spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 20-13-00024 Текст о финансировании 1: The authors are grateful to the Russian Science Foundation for financial support (Project Grant 20-13-00024). The authors thank the Research Centre for Magnetic Resonance, the Center for Chemical Analysis and Materials Research, and the Centre for X-ray Diffraction Methods of Saint Petersburg State University Research Park for obtaining the analytical data. Пристатейные ссылки: Hiesinger, K., Dar’in, D., Proschak, E., Krasavin, M., Spirocyclic Scaffolds in Medicinal Chemistry (2021) J. Med. Chem., 64, pp. 150-183; Ritchie, T.J., Macdonald, S.J., The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design? (2009) Drug Discovery Today, 14, pp. 1011-1020; Zheng, Y., Tice, C.M., Singh, S.B., The use of spirocyclic scaffolds in drug discovery (2014) Bioorg. Med. Chem. Lett., 24, pp. 3673-3682; Zheng, Y.J., Tice, C.M., The utilization of spirocyclic scaffolds in novel drug discovery (2016) Expert Opin. Drug Discovery, 11, pp. 831-834; Lovering, F., Bikker, J., Humblet, C., Escape from flatland: increasing saturation as an approach to improving clinical success (2009) J. Med. Chem., 52, pp. 6752-6756; Tajabadi, F.M., Campitelli, M.R., Quinn, R.J., Scaffold Flatness: Reversing the Trend (2013) Springer Sci. Rev., 1, pp. 141-151; Fernandes, R., Amador, P., Prudêncio, C., β-Lactams: chemical structure, mode of action and mechanisms of resistance (2013) Rev. Med. Microbiol., 24, pp. 7-17; Veinberg, G., Potorocina, I., Vorona, M., Recent Trends in the Design, Synthesis and Biological Exploration of β-Lactams (2013) Curr.Med. Chem., 21, pp. 393-416; Fisher, J.F., Mobashery, S., The β-Lactam (Azetidin-2-one) as a Privileged Ring in Medicinal Chemistry (2015) Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation, , ; . In; Bräse S. Ed.; Royal Society of Chemistry ; Lima, L.M., Silva, B., Barbosa, G., Barreiro, E.J., beta-lactam antibiotics: An overview from a medicinal chemistry perspective (2020) Eur. J. Med. Chem., 208, p. 112829; Fu, D.J., Zhang, Y.F., Chang, A.Q., Li, J., beta-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets (2020) Eur. J. Med. Chem., 201, p. 112510; Chen, L., Wang, K., Shao, Y., Sun, J., Stereoselective Synthesis of Fully Substituted beta-Lactams via Metal-Organo Relay Catalysis (2019) Org. Lett., 21, pp. 3804-3807; Huang, Z., Wang, C., Tokunaga, E., Sumii, Y., Shibata, N., Stereoselective Synthesis of beta-Lactam-triflones under Catalyst-Free Conditions (2015) Org. Lett., 17, pp. 5610-5613; Synofzik, J., Dar’in, D., Novikov, M.S., Kantin, G., Bakulina, O., Krasavin, M., alpha-Acyl-alpha-diazoacetates in Transition-Metal-Free beta-Lactam Synthesis (2019) J. Org. Chem., 84, pp. 12101-12110; Krasavin, M., Synofzik, J., Bakulina, O., Dar’in, D., Kantin, G., Dialkyl Diazomalonates in Transition-Metal-Free, Thermally Promoted, Diastereoselective Wolff β-Lactam Synthesis (2020) Synlett, 31, pp. 1273-1276; Golubev, A.A., Smetanin, I.A., Agafonova, A.V., Rostovskii, N.V., Khlebnikov, A.F., Starova, G.L., Novikov, M.S., [2 + 1 + 1] Assembly of spiro beta-lactams by Rh(II)-catalyzed reaction of diazocarbonyl compounds with azirines/isoxazoles (2019) Org. Biomol. Chem., 17, pp. 6821-6830; Xu, J., Chen, L., Reactions of unsymmetrical α-diazo-β-diketones with imines: Syntheses of 4H-1,3-oxazin-4-ones (2002) Heteroatom Chemistry, 13, pp. 165-168; Tang, J., Yan, Z.-H., Zhan, G., Yang, Q.-Q., Cheng, Y.-Y., Li, X., Huang, W., Visible-light-mediated sequential Wolff rearrangement and Staudinger cycloaddition enabling the assembly of spiro-pyrazolone-β-lactams (2022) Org. Chem. Front., 9, pp. 4341-4346; Guranova, N.I., Dar’in, D., Kantin, G., Novikov, A.S., Bakulina, O., Krasavin, M., Rh(II)-Catalyzed Spirocyclization of alpha-Diazo Homophthalimides with Cyclic Ethers (2019) J. Org. Chem., 84, pp. 4534-4542; Eremeyeva, M., Zhukovsky, D., Dar’in, D., Krasavin, M., The Use of α-Diazo-γ-butyrolactams in the Büchner-Curtius-Schlotterbeck Reaction of Cyclic Ketones Opens New Entry to Spirocyclic Pyrrolidones (2020) Synlett, 31, pp. 982-986; Dar’in, D., Kantin, G., Bakulina, O., Inyutina, A., Chupakhin, E., Krasavin, M., Spirocyclizations Involving Oxonium Ylides Derived from Cyclic alpha-Diazocarbonyl Compounds: An Entry into 6-Oxa-2-azaspiro[4.5]decane Scaffold (2020) J. Org. Chem., 85, pp. 15586-15599; Dar’in, D., Kantin, G., Chupakhin, E., Sharoyko, V., Krasavin, M., Natural-Like Spirocyclic Δα,β-Butenolides Obtained from Diazo Homophthalimides (2021) Chem. - Eur. J., 27, pp. 8221-8227; Lowe, G., Ridley, D.D., Synthesis of β-lactams by photolytic Wolff rearrangement (1973) J. Chem. Soc., Perkin Trans. 1, pp. 2024-2029; Lowe, G., Yeung, H.W., Synthesis of a β-lactam related to the cephalosporins (1973) J. Chem. Soc., Perkin Trans. 1, pp. 2907-2910; Stork, G., Szajewski, R.P., Carboxy beta-lactams by photochemical ring contraction (1974) J. Am. Chem. Soc., 96, pp. 5787-5791; Presset, M., Coquerel, Y., Rodriguez, J., Microwave-assisted Wolff rearrangement of cyclic 2-diazo-1,3-diketones: an eco-compatible route to alpha-carbonylated cycloalkanones (2009) J. Org. Chem., 74, pp. 415-418; Lei, Y., Xu, J., Efficient synthesis of ethyl 2-(oxazolin-2-yl)alkanoates via ethoxycarbonylketene-induced electrophilic ring expansion of aziridines (2022) Beilstein J. Org. Chem., 18, pp. 70-76; Dar’in, D., Kantin, G., Glushakova, D., Sharoyko, V., Krasavin, M., Diazo Tetramic Acids Provide Access to Natural-Like Spirocyclic Δα,β-Butenolides through Rh(II)-Catalyzed O-H Insertion/Base-Promoted Cyclization (2023) J. Org. Chem.; Krivovicheva, V., Kantin, G., Dar’in, D., Krasavin, M., Rh(II)-catalyzed condensation of 3-diazotetramic acids with nitriles delivers novel druglike 5,6-dihydro-4H-pyrrolo[3,4-d]oxazol-4-ones (2023) Tetrahedron Lett., 120, p. 154457; Jiao, L., Liang, Y., Xu, J., Origin of the Relative Stereoselectivity of the β-Lactam Formation in the Staudinger Reaction (2006) J. Am. Chem. Soc., 128, pp. 6060-6069; Jiao, L., Zhang, Q., Liang, Y., Zhang, S., Xu, J., A Versatile Method for the Synthesis of 3-Alkoxycarbonyl β-Lactam Derivatives (2006) J. Org. Chem., 71, pp. 815-818; Qi, H., Li, X., Xu, J., A Stereoselective control in the Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents: experimental investigation and theoretical rationalization (2011) Org. Biomol. Chem., 9, pp. 2702-2714

PY - 2024/2/16

Y1 - 2024/2/16

N2 - Herein, we report the study of the thermally promoted reaction of 3-diazotetramic acids with imines as a rapid route to a novel spiro heterocyclic scaffold, spiro bis-β-lactams (2,6-diazaspiro[3.3]heptane-1,5-diones). The transformation proceeds via metal-free microwave-assisted Wolff rearrangement of the diazo reagent followed by Staudinger [2+2] cycloaddition of the heterocyclic ketenes with Shiff bases. This methodology enables the preparation of diastereomerically pure spiro bis-β-lactams in high yields and provides an avenue for exploring new versions of the privileged β-lactam core for drug design. © 2024 American Chemical Society

AB - Herein, we report the study of the thermally promoted reaction of 3-diazotetramic acids with imines as a rapid route to a novel spiro heterocyclic scaffold, spiro bis-β-lactams (2,6-diazaspiro[3.3]heptane-1,5-diones). The transformation proceeds via metal-free microwave-assisted Wolff rearrangement of the diazo reagent followed by Staudinger [2+2] cycloaddition of the heterocyclic ketenes with Shiff bases. This methodology enables the preparation of diastereomerically pure spiro bis-β-lactams in high yields and provides an avenue for exploring new versions of the privileged β-lactam core for drug design. © 2024 American Chemical Society

KW - Amides

KW - Diazo reagents

KW - Drug Design

KW - Higher yield

KW - Metal free

KW - Microwave-assisted

KW - Shiff basis

KW - Wolff rearrangement

KW - [2 + 2] cycloaddition

KW - Scaffolds

UR - https://www.mendeley.com/catalogue/301a76f7-0a7a-30ee-b473-3484306be737/

U2 - 10.1021/acs.joc.3c02494

DO - 10.1021/acs.joc.3c02494

M3 - статья

VL - 89

SP - 3585

EP - 3589

JO - Journal of Organic Chemistry

JF - Journal of Organic Chemistry

SN - 0022-3263

IS - 5

ER -

ID: 117252420