Standard

A new look at the decomposition of unipotents and the normal structure of Chevalley groups. / Stepanov, A.

In: St. Petersburg Mathematical Journal, Vol. 28, No. 3, 2017, p. 411-419.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Stepanov, A. / A new look at the decomposition of unipotents and the normal structure of Chevalley groups. In: St. Petersburg Mathematical Journal. 2017 ; Vol. 28, No. 3. pp. 411-419.

BibTeX

@article{2ade0cb6da2c461eb7f5d2c8b6eb1e49,
title = "A new look at the decomposition of unipotents and the normal structure of Chevalley groups",
abstract = "Настоящая работа продолжает цикл статей о разложении унипотентов в группе Шевалле $\opn{G}(\Phi,R)$ над коммутативным кольцом $R$ с приведенной неприводимой системой корней $\Phi$. Зафиксируем $h\in\opn{G}(\Phi,R)$. Назовем элемент $a\in\opn{G}(\Phi,R)$ ``хорошим'', если он лежит в унипотентном радикале одной параболической подгруппы, а сопряженный с ним при помощи $h$ -- в другой параболической подгруппе (все параболические подгруппы содержат фиксированный расщепимый максимальный тор). Метод разложения унипотентов состоит в представлении элементарного корневого унипотентного элемента в виде произведения ``хороших'' элементов. Из разложения унипотентов следует простое доказательство нормальности элементарной подгруппы и стандартности нормального строения группы $\opn{G}(\Phi,R)$, однако такое разложение известно не для всех систем корней. В настоящей работе мы покажем, что для стандартности нормального строения достаточно найти один хороший элемент для общего элемента схемы $\opn{G}(\Phi,\blank)$, а также пос",
keywords = "Группы Шевалле, параболическая подгруппа, унипотентный элемент, общий элемент, универсальная локализация, нормальное строение",
author = "A. Stepanov",
year = "2017",
doi = "10.1090/spmj/1456",
language = "English",
volume = "28",
pages = "411--419",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "3",

}

RIS

TY - JOUR

T1 - A new look at the decomposition of unipotents and the normal structure of Chevalley groups

AU - Stepanov, A.

PY - 2017

Y1 - 2017

N2 - Настоящая работа продолжает цикл статей о разложении унипотентов в группе Шевалле $\opn{G}(\Phi,R)$ над коммутативным кольцом $R$ с приведенной неприводимой системой корней $\Phi$. Зафиксируем $h\in\opn{G}(\Phi,R)$. Назовем элемент $a\in\opn{G}(\Phi,R)$ ``хорошим'', если он лежит в унипотентном радикале одной параболической подгруппы, а сопряженный с ним при помощи $h$ -- в другой параболической подгруппе (все параболические подгруппы содержат фиксированный расщепимый максимальный тор). Метод разложения унипотентов состоит в представлении элементарного корневого унипотентного элемента в виде произведения ``хороших'' элементов. Из разложения унипотентов следует простое доказательство нормальности элементарной подгруппы и стандартности нормального строения группы $\opn{G}(\Phi,R)$, однако такое разложение известно не для всех систем корней. В настоящей работе мы покажем, что для стандартности нормального строения достаточно найти один хороший элемент для общего элемента схемы $\opn{G}(\Phi,\blank)$, а также пос

AB - Настоящая работа продолжает цикл статей о разложении унипотентов в группе Шевалле $\opn{G}(\Phi,R)$ над коммутативным кольцом $R$ с приведенной неприводимой системой корней $\Phi$. Зафиксируем $h\in\opn{G}(\Phi,R)$. Назовем элемент $a\in\opn{G}(\Phi,R)$ ``хорошим'', если он лежит в унипотентном радикале одной параболической подгруппы, а сопряженный с ним при помощи $h$ -- в другой параболической подгруппе (все параболические подгруппы содержат фиксированный расщепимый максимальный тор). Метод разложения унипотентов состоит в представлении элементарного корневого унипотентного элемента в виде произведения ``хороших'' элементов. Из разложения унипотентов следует простое доказательство нормальности элементарной подгруппы и стандартности нормального строения группы $\opn{G}(\Phi,R)$, однако такое разложение известно не для всех систем корней. В настоящей работе мы покажем, что для стандартности нормального строения достаточно найти один хороший элемент для общего элемента схемы $\opn{G}(\Phi,\blank)$, а также пос

KW - Группы Шевалле

KW - параболическая подгруппа

KW - унипотентный элемент

KW - общий элемент

KW - универсальная локализация

KW - нормальное строение

U2 - 10.1090/spmj/1456

DO - 10.1090/spmj/1456

M3 - Article

VL - 28

SP - 411

EP - 419

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 3

ER -

ID: 7740756