Standard

A new integrable system on S2 with the second integral quartic in the momenta. / Tsiganov, A. V.

In: Journal of Physics A: Mathematical and General, Vol. 38, No. 16, 22.04.2005, p. 3547-3553.

Research output: Contribution to journalReview articlepeer-review

Harvard

Tsiganov, AV 2005, 'A new integrable system on S2 with the second integral quartic in the momenta', Journal of Physics A: Mathematical and General, vol. 38, no. 16, pp. 3547-3553. https://doi.org/10.1088/0305-4470/38/16/006

APA

Vancouver

Author

Tsiganov, A. V. / A new integrable system on S2 with the second integral quartic in the momenta. In: Journal of Physics A: Mathematical and General. 2005 ; Vol. 38, No. 16. pp. 3547-3553.

BibTeX

@article{854ba9c1e7134e0da73dfcedf25fe832,
title = "A new integrable system on S2 with the second integral quartic in the momenta",
abstract = "We construct a new integrable system on the sphere S2 with an additional integral of fourth order in the momenta using standard machinery of the reflection equation theory. At the special values of parameters, this system coincides with the Kowalevski-Goryachev-Chaplygin system.",
author = "Tsiganov, {A. V.}",
year = "2005",
month = apr,
day = "22",
doi = "10.1088/0305-4470/38/16/006",
language = "English",
volume = "38",
pages = "3547--3553",
journal = "Journal of Physics A: Mathematical and Theoretical",
issn = "1751-8113",
publisher = "IOP Publishing Ltd.",
number = "16",

}

RIS

TY - JOUR

T1 - A new integrable system on S2 with the second integral quartic in the momenta

AU - Tsiganov, A. V.

PY - 2005/4/22

Y1 - 2005/4/22

N2 - We construct a new integrable system on the sphere S2 with an additional integral of fourth order in the momenta using standard machinery of the reflection equation theory. At the special values of parameters, this system coincides with the Kowalevski-Goryachev-Chaplygin system.

AB - We construct a new integrable system on the sphere S2 with an additional integral of fourth order in the momenta using standard machinery of the reflection equation theory. At the special values of parameters, this system coincides with the Kowalevski-Goryachev-Chaplygin system.

UR - http://www.scopus.com/inward/record.url?scp=24144497041&partnerID=8YFLogxK

U2 - 10.1088/0305-4470/38/16/006

DO - 10.1088/0305-4470/38/16/006

M3 - Review article

AN - SCOPUS:24144497041

VL - 38

SP - 3547

EP - 3553

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 16

ER -

ID: 8484030