DOI

We consider superintegrable deformations of the Kepler problem and the harmonic oscillator on the plane and also superintegrable metrics on a two-dimensional sphere, for which the additional integral of motion is either an algebraic or a rational function of momenta. According to Euler, these integrals of motion take the simplest form in terms of affine coordinates of elliptic curve divisors.
Original languageRussian
Pages (from-to)218-234
JournalТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА
Volume199
Issue number2
DOIs
StatePublished - 2019
Externally publishedYes

    Research areas

  • discrete integrable map, Finite-dimensional integrable system, intersection theory., дискретные интегрируемые отображения, конечномерные интегрируемые системы, теория пересечений.

    Scopus subject areas

  • Mathematics(all)

ID: 78374742