Исследуются формально самосопряжённые краевые задачи для эллиптических систем дифференциальных уравнений в областях с периодическими, в частности цилиндрическими, выходами на бесконечность. Приводятся постановки задач в усечённой (конечной) области, предоставляющие приближённые решения исходной задачи. Интегро–дифференциальные условия на искусственно образованном торце интерпретируется как конечномерная аппроксимация оператора Стеклова–Пуанкаре, широко используемого для уравнения Гельмгольца в цилиндрических волноводах. Выведены асимптотически точные оценки погрешностей приближений для решений задачи с финитной правой частью в бесконечной области, а также для собственных значений в дискретном спектре (если таковые существуют). Построение конечномерного интегро–дифференциального оператора основано на естественных условиях ортогональности и нормировки осциллирующих и экспоненциальных волн Флоке в периодическом квазицилиндре, порождающем выход на бесконечность.