Для некоторого класса нелинейных систем дифференциальных уравнений с постоянным запаздыванием исследуются условия асимптотической устойчивости нулевого решения и предельной ограниченности решений. Для получения таких условий предлагаются специальные конструкции функционалов Ляпунова--Красовского полного типа. Находятся оценки времени переходных процессов и проводится анализ влияния возмущений на динамику систем. Кроме того, исследуется случай, когда в системах имеются переключения режимов функционирования, и определяются условия, при выполнении которых асимптотическая устойчивость или предельная ограниченность сохраняются при любых допустимых законах переключения.
Original languageRussian
Pages (from-to)435-445
JournalДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
Volume59
Issue number4
StatePublished - 2023

ID: 104743428