Рассматривается задача оценки рейтингов (приоритетов, весов) альтернатив на основе результатов парных сравнений в соответствии с двумя критериями. Описывается формальное построение и вычислительные процедуры решения задачи с использованием методов тропической математики, которая изучает алгебраические системы со специальным образом определенными операциями сложения и умножения. Задача сводится к одновременной аппроксимации двух матриц парных сравнений общей согласованной матрицей в метрике Чебышева в логарифмической шкале. Сначала вводятся вспомогательные переменные для обозначения минимумов целевых функций и составляется параметризованное неравенство, которое определяет множество решений исходной задачи оптимизации. Необходимые и достаточные условия существования решений неравенства используются для определения значений параметров, соответствующих Парето-фронту задачи. Все решения неравенства при найденных значениях параметров берутся в качестве Парето-оптимального решения задачи. Для иллюстрации применяемых вычислительных процедур приводятся численные примеры определения рейтингов альтернатив для задач с матрицами третьего порядка.
Original languageRussian
Pages (from-to)15-32
JournalКОМПЬЮТЕРНЫЕ ИНСТРУМЕНТЫ В ОБРАЗОВАНИИ
Issue number4
StatePublished - Dec 2019

    Scopus subject areas

  • Management Science and Operations Research
  • Control and Optimization
  • Algebra and Number Theory

ID: 50905046