Standard

Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура. / Бахарев, Ф. Л.

In: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, Vol. 333, 2006, p. 17–32.

Research output: Contribution to journalArticlepeer-review

Harvard

Бахарев, ФЛ 2006, 'Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура', ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, vol. 333, pp. 17–32. <http://www.mathnet.ru/php/getFT.phtml?jrnid=znsl&paperid=238&what=fullt&option_lang=rus>

APA

Бахарев, Ф. Л. (2006). Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура. ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, 333, 17–32. http://www.mathnet.ru/php/getFT.phtml?jrnid=znsl&paperid=238&what=fullt&option_lang=rus

Vancouver

Бахарев ФЛ. Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура. ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН. 2006;333:17–32.

Author

Бахарев, Ф. Л. / Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура. In: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН. 2006 ; Vol. 333. pp. 17–32.

BibTeX

@article{1fa8d3cf0a464fbfa62b543f5e96b814,
title = "Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура",
abstract = "Работа посвящена обобщению некоторых классических результатов для расстояния Банаха–Мазура на модифицированное расстояние. Доказано существование пространства, равномерно далекого в модифицированной метрике от всех пространств с малой базисной константой, и пространства, далекого в модифицированной метрике от всех комплексных нормированных пространств. Доказано, что существует вещественное пространство, на котором можно ввести две структуры комплексного нормированного пространства, далёкие в смысле комплексного модифицированного расстояния. Доказано существование пространства, имеющего экстремально большие обобщённые объёмные отношения со всеми своими подпространствами пропорциональной размерности. Библ. – 10 назв.",
author = "Бахарев, {Ф. Л.}",
year = "2006",
language = "русский",
volume = "333",
pages = "17–32",
journal = "ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН",
issn = "0373-2703",
publisher = "Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН",

}

RIS

TY - JOUR

T1 - Обобщение некоторых классических результатов на случай модифицированного расстояния Банаха–Мазура

AU - Бахарев, Ф. Л.

PY - 2006

Y1 - 2006

N2 - Работа посвящена обобщению некоторых классических результатов для расстояния Банаха–Мазура на модифицированное расстояние. Доказано существование пространства, равномерно далекого в модифицированной метрике от всех пространств с малой базисной константой, и пространства, далекого в модифицированной метрике от всех комплексных нормированных пространств. Доказано, что существует вещественное пространство, на котором можно ввести две структуры комплексного нормированного пространства, далёкие в смысле комплексного модифицированного расстояния. Доказано существование пространства, имеющего экстремально большие обобщённые объёмные отношения со всеми своими подпространствами пропорциональной размерности. Библ. – 10 назв.

AB - Работа посвящена обобщению некоторых классических результатов для расстояния Банаха–Мазура на модифицированное расстояние. Доказано существование пространства, равномерно далекого в модифицированной метрике от всех пространств с малой базисной константой, и пространства, далекого в модифицированной метрике от всех комплексных нормированных пространств. Доказано, что существует вещественное пространство, на котором можно ввести две структуры комплексного нормированного пространства, далёкие в смысле комплексного модифицированного расстояния. Доказано существование пространства, имеющего экстремально большие обобщённые объёмные отношения со всеми своими подпространствами пропорциональной размерности. Библ. – 10 назв.

M3 - статья

VL - 333

SP - 17

EP - 32

JO - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН

JF - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН

SN - 0373-2703

ER -

ID: 5152300