Standard

Решение сетевых игр с попарным взаимодействием. / Bulgakova, M. A.

In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Vol. 15, No. 1, 15.01.2019, p. 147-156.

Research output: Contribution to journalArticlepeer-review

Harvard

Bulgakova, MA 2019, 'Решение сетевых игр с попарным взаимодействием', Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, vol. 15, no. 1, pp. 147-156. https://doi.org/10.21638/11702/spbu10.2019.112

APA

Bulgakova, M. A. (2019). Решение сетевых игр с попарным взаимодействием. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 15(1), 147-156. https://doi.org/10.21638/11702/spbu10.2019.112

Vancouver

Bulgakova MA. Решение сетевых игр с попарным взаимодействием. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2019 Jan 15;15(1):147-156. https://doi.org/10.21638/11702/spbu10.2019.112

Author

Bulgakova, M. A. / Решение сетевых игр с попарным взаимодействием. In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2019 ; Vol. 15, No. 1. pp. 147-156.

BibTeX

@article{8830a33a331a4a0d9501decdfd2b825e,
title = "Решение сетевых игр с попарным взаимодействием",
abstract = "This article is devoted to cooperative network games with pairwise interaction. We consider a two-stage game, the first stage of which represents a network-formation stage, and the second is simultaneous bimatrix games, which take place between neighbours over the network. The characteristic function is constructed, its supermodularity is proved for the case of a one-step subgame starting with the second stage. For a special class of networks (star-network), a simplified formula for the Shapley vector is found, which does not require the calculation of the values of the characteristic function over all coalitions, but only over coalitions of dimension no more than two.",
keywords = "сетевые игры, Кооперативные игры, вектор Шепли, Characteristic function, Convexity, Cooperative games, Shapley value, cooperative games, convexity, characteristic function",
author = "Bulgakova, {M. A.}",
year = "2019",
month = jan,
day = "15",
doi = "10.21638/11702/spbu10.2019.112",
language = "русский",
volume = "15",
pages = "147--156",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Решение сетевых игр с попарным взаимодействием

AU - Bulgakova, M. A.

PY - 2019/1/15

Y1 - 2019/1/15

N2 - This article is devoted to cooperative network games with pairwise interaction. We consider a two-stage game, the first stage of which represents a network-formation stage, and the second is simultaneous bimatrix games, which take place between neighbours over the network. The characteristic function is constructed, its supermodularity is proved for the case of a one-step subgame starting with the second stage. For a special class of networks (star-network), a simplified formula for the Shapley vector is found, which does not require the calculation of the values of the characteristic function over all coalitions, but only over coalitions of dimension no more than two.

AB - This article is devoted to cooperative network games with pairwise interaction. We consider a two-stage game, the first stage of which represents a network-formation stage, and the second is simultaneous bimatrix games, which take place between neighbours over the network. The characteristic function is constructed, its supermodularity is proved for the case of a one-step subgame starting with the second stage. For a special class of networks (star-network), a simplified formula for the Shapley vector is found, which does not require the calculation of the values of the characteristic function over all coalitions, but only over coalitions of dimension no more than two.

KW - сетевые игры

KW - Кооперативные игры

KW - вектор Шепли

KW - Characteristic function

KW - Convexity

KW - Cooperative games

KW - Shapley value

KW - cooperative games

KW - convexity

KW - characteristic function

UR - http://www.scopus.com/inward/record.url?scp=85064684169&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/solutions-network-games-pairwise-interactions

U2 - 10.21638/11702/spbu10.2019.112

DO - 10.21638/11702/spbu10.2019.112

M3 - статья

AN - SCOPUS:85064684169

VL - 15

SP - 147

EP - 156

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 1

ER -

ID: 45517685