In this work the notion of left (right) self-injective ring is generalized. We consider rings that are direct sum of injective module and semisimple module as a left (respectively, right) module above itself. We call such rings left (right) semi-injective and research their properties with the help of two-sided Peirce decomposition of the ring. The paper contains the description of left Noetherian left semi-injective rings. It is proved that any such ring is a direct product of (two-sided) self-injective ring and several quotient rings (of special kind) of rings of upper-triangular matrices over skew fields. From this description it follows that for left semi-injective rings we have the analogue of the classical result for self-injective rings. Namely, if a ring is left Noetherian and left semi-injective then this ring is also right semi-injective and two-sided Artinian.