Research output: Contribution to journal › Article › peer-review
Исчисление коэкзостеров второго порядка. / Аббасов, М.Э.
In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Vol. 14, No. 4, 2018, p. 276-285.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Исчисление коэкзостеров второго порядка
AU - Аббасов, М.Э.
N1 - Аббасов М. Э. Исчисление коэкзостеров второго порядка // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2018. Т. 14. Вып. 4. С. 276–285. https://doi.org/10.21638/11702/spbu10.2018.401
PY - 2018
Y1 - 2018
N2 - Коэкзостеры— новое понятие в негладком анализе, позволяющее исследовать экстремальные свойства широкого класса функций. Этот класс вводится конструктивным образом. Аналогично «классическому» гладкому случаю здесь разработаныформулы исчисления. Коэкзостеры — семейства выпуклых компактов, дающие возможность аппроксимировать приращение изучаемой функции в окрестности рассматриваемой точки в виде либо максимина, либо минимакса аффинных функций. Для более тонкого исследования негладких функций было введено понятие коэкзостеров второго порядка, которые также являются семействами выпуклых компактов и применяются для представления аппроксимации приращения функции в виде максимина или минимакса квадратичных функций. Эти объекты используются для построения оптимизационных алгоритмов второго порядка. Однако вновь возникает важная для практики задача построения исчисления, решению которой и посвящена данная работа.
AB - Коэкзостеры— новое понятие в негладком анализе, позволяющее исследовать экстремальные свойства широкого класса функций. Этот класс вводится конструктивным образом. Аналогично «классическому» гладкому случаю здесь разработаныформулы исчисления. Коэкзостеры — семейства выпуклых компактов, дающие возможность аппроксимировать приращение изучаемой функции в окрестности рассматриваемой точки в виде либо максимина, либо минимакса аффинных функций. Для более тонкого исследования негладких функций было введено понятие коэкзостеров второго порядка, которые также являются семействами выпуклых компактов и применяются для представления аппроксимации приращения функции в виде максимина или минимакса квадратичных функций. Эти объекты используются для построения оптимизационных алгоритмов второго порядка. Однако вновь возникает важная для практики задача построения исчисления, решению которой и посвящена данная работа.
KW - негладкий анализ
KW - недифференцируемая оптимизация
KW - коэкзостеры второго порядка
KW - nonsmooth analysis
KW - nondifferentiable optimization
KW - second order coexhausters
UR - http://vestnik.spbu.ru/html18/s10/s10v4/01.pdf
U2 - https://doi.org/10.21638/11702/spbu10.2018.401
DO - https://doi.org/10.21638/11702/spbu10.2018.401
M3 - статья
VL - 14
SP - 276
EP - 285
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 4
ER -
ID: 35106251